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Theoretical Methods and Techniques

In the work presented in the thesis, electronic structure calculations, direct dynamics
simulations, and RRKM theory rate constant calculations were used to study unimolecular and
bimolecular reaction dynamics. Various theoretical techniques used throughout the thesis work are
briefly described in this Chapter.

2.1 ELECTRONIC STRUCTURE

By solving the electronic Schrödinger equation under the Born-Oppenheimer approximation,
potential energy surface (PES) of a molecule can be determined[Levine et al., 2009]. The
hyper-dimensional PES describes the complicated relationship between potential energy of the
molecule and the internal coordinates of the system. Motion of a molecule containing N atoms are
described using 3N coordinates. PES depends only on the internal coordinates and invariant
under translational and overall rotational motion of the molecule. Hence, the PES depends
on 3N − 6 coordinates (without the 3 translational and 3 rotational coordinates) for non-linear
molecules and 3N − 5 (without the 3 translational and 2 rotational coordinates) coordinates for
linear molecules. The internal coordinates may be represented by simple stretch, bend, torsion
coordinates, or symmetry-adapted linear combinations of these internal coordinates, or normal
mode coordinates[Hratchian and Schlegel, 2005]. For interpretation of the experimental data and
to understand chemical processes, construction of a PES is necessary[Domcke et al., 2004; Zhang,
1999; Gerratt, 1985; Laganà and Riganelli, 2012; Truhlar, 2013]. However, determining the complete
PES for a reaction involving many atoms is an extremely challenging, if not impossible, task.
Instead, important features of a PES such as stationary points and minimum energy pathways can
be determined using numerical methods[Jensen, 2017].

2.1.1 Features of PES

Potential energy V (~q) depends on the internal coordinates ~q (q1, q2, ...) of the system. Solving
the electronic Schrödinger equation for a fixed ~q to obtain V (~q) is known as single point energy
calculation. Stationary points on the PES are points at which the net force acting on the molecule
is zero i.e.,

∂V

∂~q
= 0 (2.1)

Process of determining the stationary points on a PES is called geometry optimization[Schlegel,
1982] and is an essential tool in computational chemistry. Stationary points can be classified as
local and global minimum and maximum. A global minimum is the lowest energy value in the entire
PES and local minimum is the lowest energy value in a given region. Various stationary points
on a PES include equilibrium geometry of a molecule, reaction intermediates, and nth order saddle
points. A transition state (TS) is a 1st order saddle point. An example PES is shown in Figure 2.1.
At a stationary point, PES is flat with respect to coordinates. Search for a stationary point begins
with a guess geometry using an algorithm such as Newton or Quasi-Newton algorithm[Schlegel,
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Figure 2.1: Potential energy surface[Schlegel, 2011], and its features.

2011]. Stationary point search algorithms can be classified as methods using only energy V (~q) and
gradients ∂V/∂~q and methods based on second derivatives [Hessian ∂2V/∂qiqj , i, j = 1, 2, 3, ...
][Scales, 1985]. Methods based on Hessian converge quickly to the target stationary point in
comparison to gradient based methods, however determining the Hessian is a complicated process.
Hence, gradient based methods are usually preferred in the geometry optimization process. The
success of a geometry optimization process depends on how close the guess geometry is to the target
geometry, optimization algorithm, and the chosen coordinate system.

At a stationary point, gradient is zero with respect to all the coordinates.

∂V

∂q1
=
∂V

∂q2
= .......... = 0 (2.2)

After identification, the nature of a stationary point as a minimum or a saddle point can be
determined using the second derivatives ∂2V/∂q2i [Sheppard et al., 2008]. At a minimum, second
derivative is positive with respect to all the 3N − 6 coordinates (or 3N − 5 for a linear molecule)
i.e., V is a minimum with respect to all the coordinates,

∂2V

∂q21
> 0,

∂2V

∂q22
> 0, ...

∂2V

∂q23N−6

> 0 (2.3)

This leads to 3N − 6 real normal mode frequencies associated with the minimum (a discussion of
normal modes is presented below). These points correspond to equilibrium geometries of reactants,
products, and intermediates and they are the local or global minima. At a transition state, which
is a first order saddle point, V is a maximum with respect to reaction coordinate[Fukui, 1970] qrc
and minimum with respect to all the other coordinates. Hence,

∂2V

∂q21
> 0,

∂2V

∂q22
> 0, ...,

∂2V

∂q2rc
< 0, ...,

∂2V

∂q23N−6

> 0 (2.4)

This leads to one imaginary and the remaining real normal mode frequencies for a first order saddle
point or a transition state. For a second order saddle point, V is maximum along two coordinates
and results in two imaginary frequencies. Role of second and higher order saddle points in chemical
reactions is not clearly understood[Pradhan and Lourderaj, 2019].

After a TS geometry has been optimized, it is important to verify that the found TS
connects the correct reactant(s) with product(s). This is done by finding the steepest descent
path on both sides of the TS. Such a ’reaction path following’ may also help to identify reaction
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intermediates. A reaction path described in terms of a coordinate system in which all the coordinates
are scaled to have the same reduced mass is known as minimum energy path (MEP)[Garrett and
Truhlar, 1979; Kuppermann and Truhlar, 1971]. Both normal mode frequency calculations and
MEP characterizations are used to identify correct TSs in electronic structure calculations. Further,
frequencies are needed to compute zero point energy (ZPE) corrected stationary point energies.
Relative energies computed from electronic structure calculations have to be ZPE corrected for
making direct comparison to the experimental data.

2.2 AUTOMATED REACTION PATH DISCOVERY METHODS

Computational chemistry have opened the door for understanding of challenging chemical
problems, using ab initio methods in conjugation with advanced potential energy surface (PES)
walking algorithms (e.g., freezing string method, growing string method), which automatically
locate transition states of reactions of interest. Finding saddle points, which correspond to transition
states, still a challenge for systematic characterization because a transition structure optimization
must step uphill in one direction and downhill in all other orthogonal directions[Suleimanov and
Green, 2015]. Various methods for automated reaction pathway search have been proposed. The
growing string method (GSM) is highly useful for locating reaction paths connecting two molecular
intermediates. GSM approaches based on bond-forming rules, which first detect product channels
of potential interest and then decide on which to apply saddle point searches. GSM has often
been used in a two-step procedure to locate exact transition states (TS), where GSM creates a
quality initial structure for a local TS search[Zimmerman, 2013, 2015]. The freezing-string method
offers a choice between Cartesian interpolation and linear synchronous transit interpolation. It also
allows to choose between conjugate gradient and quasi-Newton optimization techniques[Suleimanov
and Green, 2015]. By automated reaction path discovery methods, can detect all known reaction
pathways, which manually detected in the previous studies, and other new previously unknown,
reaction pathways, which involve significant atom rearrangements.

2.2.1 Normal Mode Analysis

A normal mode is defined as the coherent oscillation of all atoms in a molecule maintaining
same phase and frequency[Wilson et al., 1980]. The 3N−6 normal modes of a non-linear molecule (or
3N−5 for a linear molecule) are obtained by separating out the translational and rotational motions.
Under the harmonic oscillator approximation[Levine et al., 2009], the vibrational frequency of a
diatomic molecule is given by

ν =
1

2π

(
k

µ

)1/2

(2.5)

where k is the force constant and µ is the reduced mass of the diatomic molecule. By treating the
normal modes of a polyatomic molecule as separable harmonic oscillators, the force constant matrix
or Hessian matrix Hij is computed

Hij =
∂2V

∂qi∂qj
(2.6)

where q1, q2, ... are the normal coordinates of the system. Diagonalization of the Hessian matrix
provides the 3N − 6 force constants from which the normal mode frequencies ν1, ν2, ν3, ... are
computed. If a stationary point on a PES is a minimum, all the 3N − 6 normal mode frequencies
are real. At a TS, the reaction coordinate is a maximum and this leads to an imaginary frequency.
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2.3 BORN-OPPENHEIMER DIRECT DYNAMICS

In Born-Oppenheimer direct dynamics simulations, classical equations of motion are time
propagated with potentials V (~q) and gradients ∂V/∂~q computed on-the-fly using an appropriately
selected electronic structure theory such as an ab initio, DFT, or a semi-empirical method[Pratihar
et al., 2017; Paranjothy et al., 2013b]. Because of the numerous electronic structure calculations
required to generate classical trajectories, direct dynamics method is computationally expensive.
Due to the advancements in computer hardware and intelligent computing algorithms, direct
dynamics method is becoming a popular tool for studying atomic level reaction dynamics. This
method has been applied to a broad range of problems including, but not limited to, unimolecular
and bimolecular reactions[Krishnan et al., 2017; Xie et al., 2015; Zhang et al., 2010], gas-surface
collision reactions[Wang et al., 2003; Park et al., 2009], post-TS reaction dynamics[Lourderaj et al.,
2008b], etc. In a direct dynamics simulation, an ensemble of classical trajectories are generated
with each trajectory having different initial positions and momenta. Selection of appropriate initial
conditions is a crucial part of a classical simulation and a variety of initial condition sampling
algorithms are available[Peslherbe et al., 1999]. Classical trajectories generated by direct dynamics
are highly accurate and have been used to interpret experimental spectra and to establish atomic
level reaction dynamics.

Figure 2.2: Flowchart describing the steps involved in a classical trajectory simulation.

Components of a classical trajectory simulation[Sun and Hase, 2003] are shown as a
flowchart in Figure 2.2 and described below.
◦ Selection of proper initial conditions [q0, p0] modeling an experiment or to compare with
predictions by a statistical rate theory such as RRKM theory.

◦ Selection of a PES which can be analytical (molecular mechanics) or can be from quantum
mechanics (direct dynamics).

◦ Integration of Newton’s or Hamilton’s equation of motion using an integration algorithm
to obtain time evolved coordinates qt and momenta pt.
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◦ Using qt and pt to analyze reaction mechanisms by direct trajectory animation and compute
properties such as product energies, scattering angles, etc., to compare with experiments or a
theoretical model.

2.3.1 Trajectory Initial Conditions

Selecting appropriate initial conditions is a crucial part of classical trajectory simulations.
Initial conditions are selected to mimic an experiment or to compare with predictions from a
rate theory such as TST or RRKM theory. There are several initial condition sampling schemes
available such as classical and quantum micro-canonical sampling, thermal sampling, and sampling
at the barrier[Peslherbe et al., 1999; Cho et al., 1992; Paranjothy et al., 2013b] to model various
experimental conditions. For example, classical micro-canonical sampling can be used to model gas
phase experiments. Sampling schemes used to perform the direct dynamics simulations reported in
the present work are briefly described below.

Classical Micro-canonical Sampling

In the classical micro-canonical sampling method[Hase and Buckowski, 1980], a molecule is
assumed to be made of separable harmonic oscillators. For a system made of n normal modes, the
Hamiltonian can be written as sum of energies for all separable harmonic oscillators,

H = E =
n∑

i=1

Ei =
n∑

i=1

P 2
i + ω2

iQ
2
i

2
(2.7)

Random values for the coordinates Qi and momenta Pi are selected such that there is a uniform
distribution in the constant energy shell H(Pi, Qi) in the phase space. Hence, the total energy E is
a constant in all the trajectories of the ensemble. The selected energy E is added to the n normal
modes of the molecule. Random values are selected for the mode energies Ei which are converted
into Qi and Pi by assigning random phase to each normal mode. The probability that mode i has
energy Ei is proportional to the number of ways (which depends on the classical density of states)
in which the remaining energy E − Ei can be distributed among the rest of the n − 1 oscillators.
This probability is given by[Hase and Buckowski, 1980]

P (Ei) =


E −

i−1∑

j=1

Ej − Ei




n−1−i


∫ (E−
∑i−1

j=1 Ej)

0


E −

i−1∑

j=1

Ej − Ei




n−1−i

dEi





−1

(2.8)

This method has been widely used to study gas phase reaction dynamics[Godara et al., 2020;
Kakhiani et al., 2009; Carrà et al., 2019; Subramanian et al., 2018]. In this sampling scheme, energy
quantization and ZPE constraints are not considered. A quantum micro-canonical algorithm[Park
et al., 2011] can be used to account for energy quantization and ZPE effects. In the present
work, only classical micro-canonical sampling method was employed. Since the total energy is a
constant, this scheme can be used to study intrinsic RRKM and non-RRKM behavior associated
with unimolecular dynamics[Baer and Hase, 1996].

Thermal Sampling

While micro-canonical sampling is performed at fixed total energies, a thermal sampling
algorithm can be used to select initial conditions Q0 and P0 at fixed temperatures[Yang et al., 2011].
At a vibrational temperature Tvib, normal mode vibrational energies are sampled by Boltzmann
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distribution. Normal mode vibrational quantum numbers ni (i = 1, 2, 3, ...3N − 6) are selected
randomly from a Boltzmann distribution at a given temperature. The probability distribution
P (ni) for the i

th mode to have vibrational quantum number ni is given by[Levine, 2009].

P (ni) = e−nihνi/kBTvib [1− ehνi/kBTvib ] (2.9)

Here, νi is the normal mode vibrational frequency of the ith mode and kB is the Boltzmann constant.
While micro-canonical ensemble can be used to find classical k(E), thermal sampling leads to k(T ).
For large molecule with several vibrational degrees of freedom, k(E) and k(T ) become equal at
sufficiently large excitations[Lourderaj et al., 2008a]. After the selection of initial conditions, they
are time propagated using an integration method which is briefly discussed below.

2.3.2 Integrator

In a classical trajectory simulation, numerical integration of the Newtonian or Hamiltonian
equations of motion are performed. The integrations can be performed in internal, Cartesian,
or instantaneous normal mode coordinates[Wilson et al., 1980; Adams and Stratt, 1990; Miller
et al., 1989]. Potential energy is well defined in internal coordinates but to compute kinetic energy,
both coordinates and momenta are required and hence Cartesian or normal mode coordinates
are more suitable. Different integration algorithms such as Gear, Adams-Moulton, Gauss-Radau,
Bulirsch-Stoer, fourth-order-Range-Kutta, and sixth-order Adams-Bashforth-Moulton are used for
performing integration in Cartesian coordinates[Press et al., 1992; Sun and Hase, 2003; Stoer
and Bulirsch, 1993; Thompson, 1998; Bolton and Nordholm, 1994]. These methods are based
on predictor-corrector algorithm which is a modified Euler method. They are best suited for
integrating ordinary differential equations to find unknown functions. Total energy conservation in
the trajectories is not well conserved using these methods particularly for longer total integration
times. For good energy conservation, methods beyond 4th order are needed. Symplectic integration
methods[Gray et al., 1994; Schlier and Seiter, 1998], which are based on Runge-Kutta algorithm, are
a good alternate and are very good in conserving total energy in the trajectories. These methods are
the best choices for direct dynamics simulations because they maintain the symplectic structure of
the classical phase space dq∧dp. A comparison of energy conservation in a classical trajectory using
a symplectic and a non-symplectic method is shown in Figure 2.3. Non-symplectic integrators are

Figure 2.3: Numerical energy at each time step using a symplectic method and a non-symplectic
Runge-Kutta method[Rieben et al., 2004]. y axis shows energy in kcal/mol and x-axis
shows time in units of 10−14s.

computationally less time consuming in comparison to symplectic integrators but the total energy
conservation is very good in the latter. Further, symplectic integrators are preferred in longer time
integrations. The choice of the integrator depends on the size of the system, time duration, and also
time-step. The idea of symplectic integrators is briefly mentioned here. Hamiltonian of a system
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can be written as

H(qi, pi) = T (pi) + V (qi) (2.10)

and the equations of motion are

dpi
dt

= −
∂H

∂qi
and

dqi
dt

=
∂H

∂pi
(2.11)

For a given dynamical variable z=(qi,pi), the Hamilton’s equations can be expressed as

ż = {z,H(z)} (2.12)

Here {., .} stands for the Poisson bracket. On introducing a differential operator DH , above equation
can be simplified as:

ż = DHz (2.13)

The Solution z(t) from t = 0 to t = τ is given by a matrix exponential

z(τ) = e(τDH )z(0) (2.14)

Here τ is step-size.

z(τ) = e[τ(DT+DV )]z(0) (2.15)

Suppose, ci and di are real numbers, where

k∑

i=1

ci =

k∑

i=1

di = 1 (2.16)

and satisfy the given equality,

e[τ(DT+DV )] = e(ciτDT )e(diτDV ) +O(τn+1) (2.17)

Here n is the order of the integrator. For all z

D2
T z = {{z, T}, T} = {{q̇, 0}, T} = (0, 0) (2.18)

Since {., .} represents Poisson bracket. Hence

D2
T = 0 (2.19)

Using a Taylor series expansion, e(αDT ) can be expressed as

e(αDT ) =

∞∑

n=0

(αDT )
n

n!
(2.20)

where α is an arbitrary real number.

e(αDT ) = 1 + αDT (2.21)

and

e(αDV ) = 1 + αDT (2.22)

The simplified form of equations are:

qj+1 = qj + cj
pj + 1

m
t (2.23)

pj+1 = pj + diF (qj)t (2.24)

Here, F represents the gradient and m is the scalar quantity of mass.

In the present work, 6th order symplectic integration method and velocity-verlet (2nd order)
integration method are used for trajectory integration[Schlier and Seiter, 2000; Yoshida, 1990;
Verlet, 1967]. Time-step used in the integrations is an important quantity to determine the
accuracy of the trajectories. Larger time-step lead to poor energy conservation and very small
time-steps will enhance the computational time significantly. In practice, the largest normal mode
vibrational frequency and the associated time-period are used in determining the time-step △t.
The best value for △t will be (1/ν) ∗ 0.1 where ν is the largest vibrational frequency in the system.
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2.3.3 Bimolecular Collisions

A collision between two reactants

A + B → C+D (2.25)

is defined by the force acting between the molecules[Levine, 2009]. The collision can be reactive
or unreactive. Bimolecular collisions in the gas phase depend on several factors including impact
parameter and collision cross section. Reaction cross section, which is an important quantity in the
study of bimolecular reaction dynamics, is a measure of the number of reactive collisions between
molecules of type A and those of type B (both in well defined quantum states) which are moving
towards each other with well defined relative velocity[Kuppermann and Greene, 1968].

(
dnB
dt

)

v

= −

(
dnA
dt

)

v

= σrvnAnB (2.26)

Here nA and nB are the number densities of A and B and σr and v are the reaction cross section and
relative velocity, respectively. Reaction cross section has the dimensionality of area and it measures
the effective size of molecules for the reaction to occur i.e., it provides the likelihood of a reaction
occurring during a collision. Classical expression for the reaction cross section is given by[Sun and
Hase, 2003]

σr =

∫ bmax

0
Pr(b)2πbdb (2.27)

where b is the collision impact parameter which is measure of distance of closest approach between
the two colliding molecules in the absence of a force. Pr(b) is the probability for the reaction to
occur at a given b, i.e., Pr(b) = Nr/N where Nr and N are the number of reactive and total number
of trajectories, respectively, in a classical trajectory simulation at a given value of b. Integration in
Eq.(2.26) is between 0 and bmax which is the largest value of b at which a reactive collision takes
place. Further,

〈Pr(b)〉 =

∫ bmax

0 Pr(b)2πbdb∫ bmax

0 2πbdb
(2.28)

∫ bmax

0
2πbdb = πb2max (2.29)

σr = 〈Pr(b)〉 πb
2
max (2.30)

To determine σr from a classical trajectory simulation, trajectories are sampled with b values
ranging from 0 to bmax. For practical purposes, bmax is determined by running a small number of
trajectories over a range of b values and bmax is selected based on reactivity.

2.3.4 Unimolecular Dissociation Reactions

In unimolecular dissociation reactions a molecule excited with its threshold energy.
Threshold energy distributed within intramolecular bonds and gives vibrational-rotational
excitation of molecule.

A → A* → B + C (2.31)

where the (*) denotes vibrational-rotational excitation. If unimolecular decomposition is random
during the timescale i.e. A∗ is initially excited with a microcanonical ensemble and intramolecular
dynamics of A∗ is ergodic[Hase et al., 2003]. The unimolecular rate constant, for a microcanonical
ensemble of reactant calculated with the Rice-Ramsperger-Kassel-Marcus (RRKM) rate constant.
The trajectory lifetime is exponential[Lourderaj and Hase, 2009] for RRKM unimolecular dynamics.
If the system is intrinsically non-RRKM, the lifetime distribution is multi-exponential[Lourderaj
and Hase, 2009]
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2.4 RRKM CALCULATIONS

RRKM (Rice-Ramsperger-Kassel-Marcus) theory is used to determine the energy dependent
rate constant k(E) for the unimolecular decomposition of a micro-canonical ensemble[Marcus and
Rice, 1951; Marcus, 1952]. RRKM theory is based on the assumption that the internal energy
in a molecule is distributed among the modes of the molecule according to equipartition theorem
i.e., instantaneous IVR happening in the molecule in the timescale of reaction. Vibrational modes
are treated in an adiabatic manner because of the angular momentum conservation. According to
RRKM theory, micro-canonical rate constant is given by

k(E) =
G(E†)

hN(Ev)
(2.32)

where G(E†) is the sum of states at the transition state and N(Ev) is the density of states of the
reactant and h is the Planck’s constant. Sum and the density of states can be determined in a
classical or quantum mechanical or a semi-classical manner[Beyer and Swinehart, 1973].

In a classical trajectory simulation, for a micro-canonical ensemble of initial conditions, the
trajectory lifetime N(t)/N(0) is exponential[Lourderaj and Hase, 2009] for RRKM unimolecular
dynamics. Here, N(t) is the number of trajectories in which the unimolecular reactant has not
dissociated at time t and N(0) is the total number of trajectories.

N(t)

N(0)
= e−k(E)t (2.33)

If the system is intrinsically non-RRKM, the lifetime distribution is multi-exponential[Lourderaj
and Hase, 2009],

N(t)

N(0)
=

∑

i

fie
−kit (2.34)

Here,
∑

i fi = 1. Such non-RRKM behavior occurs due to trajectory recrossing the transition state
region and the non-ergodic nature of the classical phase space[Manikandan and Keshavamurthy,
2014].

2.5 SOFTWARE

For performing the electronic structure calculations reported in the present work, the
open-source NWChem electronic structure theory package[Valiev et al., 2010] was used. The direct
dynamics calculations were performed using the general chemical dynamics program VENUS[Hase
et al., 1996] which is interfaced with NWChem for carrying out the on-the-fly electronic structure
calculations. The two codes are compiled together using a tight coupling algorithm[Lourderaj et al.,
2014] and run as a single executable. The RRKM rate constants k(E) were computed using the
computer program developed and published by Hase’s research group[Zhu and Hase, 1994].

15




