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Effect of Quantum Decoherence on

Coherence and Mixedness in
Neutrino-system for LSND setup

This chapter is based on Ref. [95]. Neutrino experiments so far have resulted in favour
of the standard oscillation picture as a dominant mechanism to explain the experimental obser-
vations, excluding some exceptional cases, such as the observations found in liquid scintillator
neutrino detector (LSND) experiment. However, owing to a more precise new generation of neu-
trino oscillation experiments, it is worth studying the secondary contributions coming from some
exotic physics viz. quantum decoherence [169]. Moreover, for significant utilization of neutri-
nos to perform quantum information tasks, it is also important to study the nature of correlations
present in the system under different circumstances. In this chapter we examine the agreement
between coherence and mixedness present in the neutrino-system under the influence of quantum
decoherence based on a model suggested to explain the LSND anomaly [74].

The fact is well known that the presence of decoherence effects causes the loss of infor-
mation present in a quantum mechanical state that can be characterized in terms of the diminishing
purity of the state. In other words, it represents the loss of coherence. Therefore, it becomes very
important to appropriately quantify the purity or its reciprocal property, the mixedness. Also, it
is reasonable to discuss about the complementarity between mixedness present in the system with
the coherence it restrains. The quantification of mixedness as well as its trade-off relation with
coherence has been discussed in [214] where the aim was to investigate the upper bound imposed
by mixedness of a quantum system on the maximum amount of quantum coherence present in the
system and to develop a mathematical formulation for the same. Here, in this chapter, we focus
specifically on neutrino oscillation scenario to investigate such complimentarity relation between
mixedness and coherence embedded in the neutrino system.

It is to be noted that a quantum mechanical system can exhibit maximum coherence when
it is characterized by a state in a specific eigenbasis, however, it is possible to have zero coherence
in a different eigenbasis for the same quantum system. Basically, coherence is a basis dependent
quantity. In case of neutrinos, we have two options for the choice of basis, viz. mass eigenstate
and flavor state basis. In this work, we are interested in investigating the trade-off relation between
coherence and mixedness for neutrino system in the presence of decoherence. Effects of such
dissipation are introduced in the mass eigenstates of neutrinos that can be described in terms of
open quantum system formalism. Hence, it is meaningful to consider the coherence parameter in
mass eigenstate basis. In section 5.1 we provide a detailed calculation following the results and
discussions for such analysis.
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5.1 Effect of decoherence on coherence and mixedness in oscillating
neutrino system

Recently a trade-off between mixedness and quantum coherence, from the perspective
of resource theory [215], inherent in the system was proposed in the form of a complementarity
relation [109]. These studies have mostly been focused on quantum optical systems from the per-
spective of quantum information. Here the interplay between quantum coherence and mixedness
inherent in the state (Eq. 5.4) of neutrinos has been studied. The definition of coherence χ(ρ) is
given in [18], in terms of the off-diagonal elements of the density matrix. This has been discussed
in detail in 2.2. The mixedness, which represents the disorder in the system, can be quantified
in terms of entropic functionals, viz., linear and von Neumann entropy of the quantum state. For
an arbitrary d-dimensional state, the mixedness, based on normalized linear entropy [214] can be
given as

η(ρ) =
n

n− 1
(1− Tr ρ2), (5.1)

while the coherence can be quantified as

χ(ρ) =
∑
i ̸=j

|ρij |, (5.2)

Here ρij are the off-diagonal elements of the density matrix ρ and n is the dimension of the system.
The balance between coherence and mixedness was recently expressed in terms of a complemen-
tarity relation [109] which is as follows

β(ρ) =
χ2(ρ)

(n− 1)2
+ η(ρ) ≤ 1. (5.3)

Here, n = 3 in case of neutrino system with three flavours. It would be n = 4 for the system of
neutral K and B-mesons which is discussed with complete analysis in chapter 10.

Three flavour states (|νe⟩, |νµ⟩, |ντ ⟩) of neutrino mix via a 3 × 3 unitary (PMNS) matrix
U(θij , δ), i, j = 1, 2, 3 ; i < j, where θij are the mixing angles and δ is CP-violating phase, to
form three mass eigenstates (|ν1⟩, |ν2⟩, |ν3⟩). The mass eigenstates evolve as plane waves, i.e.
νa(t) = e−iEat νa(0), a = 1, 2, 3. A neutrino state |Ψα(0)⟩ at time t = 0 evolves unitarily to time
t and can be written in flavour basis as

|Ψα(t)⟩ =
∑

β=e,µ,τ

ζα,β(t) |νβ⟩ . (5.4)

Here ζα,β = (UEU−1)α,β , withE = diag[e−iE1t, e−iE2t, e−iE3t]. Under the system environment
interaction, a pure state is almost inevitable transformed into a mixture of pure states often called
as mixed state. Such states are no longer represented by rays in Hilbert space, rather they are de-
scribed by density matrix or density operator, an element of a set of trace class operators with unit
trace. The density matrix formalism is in fact a general description for both pure and mixed states,
characterized by Tr[ρ2] = 1 and Tr[ρ2] < 1, respectively. Hence we use this formalism here
too. In this work we use the initial state as ρµ(0) = |νµ⟩ ⟨νµ|, relevant to the LSND experiment
and in the context of the decoherence model discussed in section 3.3. The time evolution of the
corresponding state can be expressed as

ρ(t) =


ρ11(0) ρ12(0)e

−(γ12−i∆12)t ρ13(0)e
−(γ13−i∆13)t

ρ21(0)e
−(γ21−i∆21)t ρ22(0) ρ23(0)e

−(γ23−i∆23)t

ρ31(0)e
−(γ31−i∆31)t ρ32(0)e

−(γ32−i∆32)t ρ33(0)

 , (5.5)
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where, γij are the decoherence parameters and ∆ij ≈ ∆m2
ij

2Eν
, with ∆m2

ij and Eν being the mass
square difference and the energy of the neutrino, respectively. Here the elements of the density
matrix at time t = 0 are given by ρij(0) = U∗

µiUµj (for initial state νµ), Uµi are the elements of the
second row of the U (PMNS) matrix given in Eq. (3.3). The matrix defining the evolution operator
(UEU−1) contains, apart from the mixing angles θij , the mass square differences ∆m2

ij = m2
j −

m2
i . The numerical values of these quantities used in this work are θ12 = 33.48o, θ23 = 42.3o,

θ13 = 8.5o, ∆m2
21 = 2.457× 10−3eV2, ∆m2

31 ≈ ∆m2
32 = 2.457× 10−3eV2 [216].
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Figure 5.1: Neutrino system (LSND decoherence model): Coherence parameter χ(ρ) (left), mixedness pa-
rameter η(ρ) (middle) and complementarity parameter β(ρ) (right), plotted as a function of
neutrino energyEν (MeV) with CP violating phase δ = 0. The maximum value of decoherence
parameter, defined in Eq. (3.24), corresponds approximately to 30 MeV (vertical dashed line).
At this energy the coherence and the mixedness parameter attain their minimum and maximum
values, respectively.

Figure 5.2: Coherence parameter χ as defined in Eq. (5.2), for the state in Eq. (5.5), is plotted with respect
to the CP violating phase δ and the energy Eν of the neutrino. The blue and red surfaces
correspond to the cases with and without decoherence parameter, respectively. The minimum
of the coherence parameter occurs for Eν ≈ 30 MeV and δ = π.

In case of neutrinos, since we are restricted to use a specific model to incorporate decoher-
ence effects, we used the phenomenological approach of [73, 74] which was motivated to explain
the LSND signal. The decoherence parameter γ (also discussed in section 3.3) has exponential
dependence on neutrino-energy Eν in the following way

γ = γ0

(
exp

[
−
(
E

E3

)n]
− exp

[
−
(
E

E1

)n])2

, (5.6)

with best fit values of E3 and E1 as 55 MeV and 20 MeV, respectively, n = 2 and γ = 0.01 m−1

suitable to explain LSND data.

Using this formalism, we plotted coherence χ(ρ) (left), mixedness parameter η(ρ) (mid-
dle) and the parameter β(ρ) showing the trade-off relation (right) in Fig. 5.1. The baseline is
considered to be L = 30 m corresponding to the LSND experiment, while we have kept the CP -
violating parameter δ to be zero. The energy range is also considered to be associated to the LSND
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setup that is around 0 - 100 MeV. It can be seen that γ defined in Eq. (5.6) attains its maximum
value at approximately 30 Mev. Consequently, the coherence parameter χ and the mixedness pa-
rameter η attain their minimum and maximum values, respectively, at this energy as is shown in
Fig. 5.1. The complementarity relation is found to be satisfied in case of neutrinos as can be seen
in right panel of Fig. 5.1.

In Fig. 5.2, we have also plotted the coherence parameter with respect to the neutrino-
energy and CP phase δ. The coherence for the neutrino system is found to depend on the CP
violating phase. It is clear that the coherence parameter decreases (increases) in the upper half
plane 0 < δ < π (lower half plane π < δ < 2π), and attains its minimum value at δ = π and
energy Eν ≈ 30 MeV.

For neutrino system, coherence and mixedness is studied in the context of the decoherence
model for LSND experiment. In this model, the decoherence parameter γ is a function of the
energy of neutrino Eν . The coherence parameter decreases with the increase in γ and attains its
minimum value at Eν ≈ 30 MeV. Further, the coherence for the neutrino system is found to
depend on the CP violating phase δ.

One point is to note that the trade-off relation mentioned here provides and upper bound on
coherence that can be acquired by a state having a fixed value of mixedness and that upper bound
is defined by considering the equality sign in Eq. (5.3). Such class of states is named as maximally
coherent mixed states. However, the three flavor neutrino state (in mass eigenstate basis) is not
found to achieve that upper bound for the present bounds on oscillation parameters (i.e., mixing
angles and mass squared differences) for the LSND setup.
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