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Quantum Correlations in Neutrino

Oscillations in Curved Spacetime

This chapter is based on the Ref. [98]. Following the motivation for the study of the nature
of correlations embedded in the neutrino-system under different circumstances, in this chapter, we
explore various spatial quantum correlations in neutrinos propagating and oscillating in curved
spacetimes. A model describing neutrino-antineutrino oscillations due to gravitational Zeeman
splitting [83] has been considered to incorporate the effect of curved spacetime around a massive
object following Kerr geometry. Specific choice of Kerr geometry that has also been justified in
Ref. [223, 224] causes the neutrino-antineutrino asymmetry (apart from early Universe processes)
in the present era when the Universe has cooled down and it can happen when the neutrino prop-
agates through a spacetime curvature produced by e.g., a rotating black-hole, i.e., Kerr geometry.
Basically, when fermions propagate in curved spacetime, it generates gravitational interaction due
to coupling of its spin with spacetime curvature connection. This gravitational interaction appears
as a CPT violating term generating opposite signs (and hence asymmetry) between left handed
and right handed partners of the fermion under CPT transformation. Specifically for neutrinos,
this property can generate neutrino-antineutrino asymmetry. This interaction for neutrinos appears
to be non-zero if the background metric is of the rotating black hole, i.e., Kerr geometry. Hence,
it is interesting to analyze correlation aspects of neutrinos in such spacetime geometry due to its
compelling physical implications.

We have considered one and two-flavour neutrino scenarios, which lead to two- and four-
level systems of neutrino-antineutrino oscillation, respectively. To study the correlation measures,
the idea of mode entanglement is used [15], as discussed ahead in this chapter.

The plan of this chapter is as follows. In section 8.1 we briefly review the gravitational
Zeeman effect. Then we discuss the nature of quantum correlations in gravity induced neutrino-
antineutrino oscillations for one and two-flavour scenarios in section 8.2.

8.1 Gravitational “Zeeman effect”
The general form of invariant coupling of a spin-1/2 particle with spacetime curvature is

described by the following Lagrangian [225–232]

L =
√
−g
(
i

2
Ψ̄γa

↔
DaΨ− Ψ̄mΨ

)
,

with the covariant derivative Da = ∂a − i
4ωbcaσ

bc. Here,

ωbca = ebλ(∂ae
λ
c + Γλγδe

γ
c e
δ
a),

are the spin connections and σbc = 1
2 [γ

b, γc].
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8 Quantum Correlations in Neutrino Oscillations in Curved Spacetime

Figure 8.1: Gravitational “Zeeman-splitting”: Weak gravitational effect, as given by Eq. (8.3), is considered
for the ease of demonstration.

Above equations are written in local inertial frame which is flat along the entire geodesic.
Latin and Greek alphabets denote the local flat space and the curved space indices, respectively.
e’s are the vierbeins connecting curved and locally flat space indices following the relations

eδae
νa = gδν , eaδebδ = ηab.

Here, ηab and gδν represent the inertial frame Minkowski metric and curved spacetime metric,
respectively.

Hence, Dirac equation in the presence of background gravitational fields, in a local inertial
coordinate, reduces as (see, e.g., [84, 233–235])[

iγa∂a −m+ iγaAga + γaγ5Bg
a

]
ψ = 0, (8.1)

where Aga and Bg
a are the gravitational 4-vector potentials (gravitational coupling with the spinor)

and can be given as

Ba
g = ϵabcdωbca,

m is the mass of spinor, and γ5 = γ5 = iγ0γ1γ2γ3 as usual. Here we choose ℏ = c = 1. For
simplicity, in rest of the discussion, we retain and explore the consequence of the axial-vector-like
term only in equation which suffices for the present purpose. This simplification is, however, also
consistent in case of Kerr-geometry since the vector-like term is anti-Hermitian for Kerr geometry
in local coordinates and can be removed from the total Lagrangian when added to its complex
conjugate part. This is particularly so for Majorana neutrinos, when massive neutrinos are most
plausibly believed to be Majorana typed. Nevertheless, such a vector-like anti-Hermitian term
would not contribute to the effective energy of the particle with an appropriate definition of dot-
product in curved spacetime [235, 236].

Now for the nontrivial solution of ψ, the Hamiltonians of the spin-up and spin-down par-
ticles are given by

(H + σ⃗.B⃗g)2 = p⃗2 +Bg
0
2
+m2 − 2Bg

0 σ⃗.p⃗, (8.2)

where Bg
0 is the temporal component of Bg

µ. In the regime of weak gravity and when m is much
larger than the rest of the terms in the R.H.S. of Eq. (8.2), it reduces to

H = −σ⃗.B⃗g ±

[
p⃗2 +Bg

0
2

2m
+m− Bg

0 σ⃗.p⃗

m

]
. (8.3)
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8.2 Quantum correlations in neutrinos

There are two-fold splits in dispersion energy, governed by two terms associated with the
Pauli spin matrix, between up and down spinors for positive and negative energy solutions. See
Fig. 8.1 demonstrating the same. Note that Fig 8.1, based on Eq. (8.3) is given here for a special
case of non-relativistic neutrinos to explain the energy splitting for neutrino-antineutrino states of
same mass m in a quite simple manner. However, through out the analysis in this chapter we have
considered the generalized relativistic case.

In order to have nonzeroBg
a , spherical symmetry has to be broken, hence in Schwarzschild

geometry it vanishes. In Schwarzschild metric, any possible effect would arise from Aga, which is
removed in the present formalism. Indeed it is known [237, 238] that spin evolution in spherical
symmetric spacetime could arise only from an imaginary Lorentz vector-like term. On the other
hand, in Kerr geometry Bg

a survives. Also it survives in, e.g., early universe under gravity wave
perturbation, Bianchi II, VIII and IX anisotropic universes. Note that in an expanding universe,
gravitational potential Bg

a turns to be constant at a given epoch which could act as a background
effect.

In Kerr-Schild coordinate, after putting ℏ and c appropriately, the temporal part of Bg
a

reads as

Bg
0 = − 4az

ρ̄2
√
2r3

ℏc
rg
, (8.4)

where ρ̄2 = 2r2+a2−x2−y2−z2, r is the radial coordinate of the system expressed in units of rg,
rg = GM/c2, M and a (varying from −1 to +1) are respectively mass and dimensionless angular
momentum per unit mass of the black hole, G, c and ℏ are respectively Newton’s gravitation
constant, speed of light and reduced Planck’s constant. Naturally, Bg

0 survives (and is varying with
space coordinates) for any spinning black hole leading to gravitational Zeeman effect.

In Bianchi II spacetime with, e.g., equal scale-factors in all directions, Bg
0 survives as

Bg
0 =

4 + 3y2 − 2y

8 + 2y2
ℏc. (8.5)

8.2 Quantum correlations in neutrinos
We will now analyze the neutrino anti-neutrino oscillations in one and two flavour scenar-

ios, which can be viewed as two and four level systems, respectively. The schematic diagram is
given in Fig. 8.2.

Figure 8.2: Neutrino-antineutrino oscillations in (a) one-flavour, and (b) two-flavour scenarios.

8.2.1 Neutrino-antineutrino mixing in single flavour scenario
Let us consider, in Weyl representation, a 2-level system describing the mixing of neutrino

(ψ) and antineutrino (ψc) [239] in the presence of gravitational coupling. We can express the states
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8 Quantum Correlations in Neutrino Oscillations in Curved Spacetime

with known mass (but unknown lepton number states, in the present case spin-states) in terms of
states with known lepton/spin-states or vice versa. This is in the spirit of mixing in the neutral
kaons, differing by two units of strangeness, whereas for neutrino and antineutrino it differs by
two units of lepton number. The corresponding mass eigenstates for a particular flavour at t = 0
are [83, 84]

|ν1(0)⟩ = cos θ |ψc(0)⟩ + eiϕ sin θ |ψ(0)⟩
|ν2(0)⟩ = − sin θ |ψc(0)⟩ + eiϕ cos θ |ψ(0)⟩, (8.6)

when

tan θ =
m

Bg
0 +

√
Bg

0
2
+m2

, ϕ = arg(−m), (8.7)

where m is the Majorana mass of neutrino. Note that the mixing is maximum for Bg
0 = 0. How-

ever, at an arbitrary time t the mass eigenstates are

|ν1(t)⟩ = cos θ e−iEψc t |ψc(0)⟩ + eiϕ sin θ e−iEψt |ψ(0)⟩
|ν2(t)⟩ = − sin θ e−iEψc t |ψc(0)⟩ + eiϕ cos θ e−iEψt |ψ(0)⟩,

(8.8)

where the dispersion energies for neutrino and antineutrino respectively, due to gravitational Zeeman-
splitting, from Eq. (8.2) are given by

Eψ =

√
(p⃗− B⃗g)2 +m2 +Bg

0 ,

Eψc =

√
(p⃗+ B⃗g)2 +m2 −Bg

0 . (8.9)

For ultra-relativistic neutrinos,m≪ |p⃗| leading toEψ−Eψc ≈ 2(Bg
0−|B⃗g|), the survival

probability of ν1 at time t can be expressed as

Ps(t) = 1− sin2 2θ sin2{(Bg
0 − |B⃗g|)(t)}. (8.10)

Note that (ν1(0), ν2(0)) is just the transformed spinor of original (ψc, ψ). In the limit of zero
gravitational effect, i.e.,Bg

µ → 0, Ps(t) → 1. Thus the neutrino-antineutrino oscillations primarily
occur due to non-zero value of the gravitational potential, when the present analysis is performed
for ultra-relativistic neutrinos.

In Fig. 8.3(a), the survival probability for ν1 ↔ ν2 oscillations is shown as a function
of gravitational potential and the distance (L ≈ ct in ultra relativistic limit1) traveled by the neu-
trino/antineutrino. The survival probability can be seen to approach its maximum value unity as
the gravitational potential increases. This implies that gravity suppresses the neutrino-antineutrino
oscillations for a fixedm. Further, as noted earlier, the neutrino-antineutrino oscillation approaches
maximum when Bg

0 → 0.

von Neumann entropy in oscillation
The neutrino-antineutrino system can be treated as an effective two qubit system [15, 18,

19, 206] with the following occupation number representation of states defined in Eq. (8.6) as

|ν1(0)⟩ ≡ |10⟩ , |ν2(0)⟩ ≡ |01⟩ .
1Here, entire analysis is performed in local inertial coordinates. Hence, at each point, all the special relativistic norms

are conveniently satisfied such that at a given local point, Bg
µ appears as constant background field [83].
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8.2 Quantum correlations in neutrinos

(a) (b)

Figure 8.3: Fixed flavour case: (a) Survival probability, and (b) von Neumann entropy, as functions of
gravitational potential and distance traveled by neutrino/antineutrino, for the massive states
ν1 ↔ ν2 corresponding to neutrino-antineutrino oscillation. The various parameters used are:
m = 5× 10−3 eV, |B⃗g| ∼ 10−2 eV.

The notation |10⟩ amounts to asking whether we have a |ν1⟩ state or not. In this notation, one can
finally write

|ν1(t)⟩ = U11(t) |10⟩+ U12(t) |01⟩ ,
|ν2(t)⟩ = U21(t) |10⟩+ U22(t) |01⟩ , (8.11)

where the coefficients can be obtained from Eqs. (8.6) and (8.8) as

U11(t) = cos2 θe−iEψc t + sin2 θe−iEψt,

U12(t) = sin θ cos θ(e−iEψt − e−iEψc t),

U21(t) = sin θ cos θ(e−iEψt − e−iEψc t),

U22(t) = sin2 θe−iEψc t + cos2 θe−iEψt.

A standard measure of entanglement for pure states, of form Eq. (8.11), is given by von
Neumann entropy

S = −
∑
β=1,2

|Uαβ(t)|2 log2 |Uαβ(t)|2

−
∑
β=1,2

(1− |Uαβ(t)|2) log2(1− |Uαβ(t)|2). (8.12)

Here α = 1 (2) corresponds to the ν1 (ν2) state. For the ν1 ↔ ν2 oscillation, Fig.
8.3(b) shows the variation of S as a function of Bg

0 and L. The existence of entanglement is
implied by S > 0. The von-Neumann entropy, as an entanglement measure, is suitable for neutrino
system since it can be expressed in terms of the survival and transition probabilities, which are
experimentally measurable quantities [18]. The increase in the gravitational potential is found to
decrease the entanglement in the neutrino-antineutrino system for a fixed m. Further, the entropy
attains maximum value when the neutrino and antineutrino both survival probabilities and, hence,
their transition probabilities are equal.

8.2.2 Two-flavour oscillation with neutrino-antineutrino mixing
In this case, the flavour and mass eigenstates are related via a unitary matrix V as follows

[83]:
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8 Quantum Correlations in Neutrino Oscillations in Curved Spacetime


ψce
ψcµ
ψe
ψµ

 = V


χ1

χ2

χ3

χ4.

 , (8.13)

where

V =


cos θe cosϕ1 − cos θe sinϕ1 − sin θe cosϕ2 sin θe sinϕ2
cos θµ sinϕ1 cos θµ cosϕ1 − sin θµ sinϕ2 − sin θµ cosϕ2
sin θe cosϕ1 − sin θe sinϕ1 cos θe cosϕ2 − cos θe sinϕ2
sin θµ sinϕ1 sin θµ cosϕ1 cos θµ sinϕ2 cos θµ cosϕ2

 . (8.14)

One should note here that the dimension of the spinor in Eq. (8.13) is now increased as
it has 4 components: two of them representing the electron-neutrino (ψe) and muon-neutrino (ψµ)
and remaining two, ψce and ψcµ, would represent respectively their antiparticles. Consequently, we
will also have a spinor χ = (χ1, χ2, χ3, χ4)

T constituting corresponding mass eigenstates, two of
them for νe − ν̄e mixing and the rest of them for mixing between νµ − ν̄µ. The mixing angles are
related to the masses and the gravitational scalar potential as [83]

tan θe,µ =
me,µ

Bg
0 +

√
(Bg

0)
2 +m2

e,µ

, (8.15)

tanϕ1,2 =
∓2meµ

me(1,2) −mµ(1,2) +
√

(me(1,2) −mµ(1,2))2 + 4m2
eµ

. (8.16)

The masses corresponding to the mass eigenstates are given as

M1,2 =
1

2

[
(me1 +mµ1)±

√
(me1 −mµ1)2 + 4m2

eµ

]
,

M3,4 =
1

2

[
(me2 +mµ2)±

√
(me2 −mµ2)2 + 4m2

eµ

]
, (8.17)

with

m(e,µ)1 = −
√

(Bg
0)

2 +m2
e,µ m(e,µ)2 =

√
(Bg

0)
2 +m2

e,µ, (8.18)

and meµ being the mixing mass.

Figure 8.4: Left panel: The variation of von Neumann entropy for 2-flavour neutrino-antineutrino oscilla-
tion with respect to the distance (L) traveled by neutrinos and the gravitational potential (Bg

0 ).
Right panel: The contributions to flavour entropy from neutrino-neutrino oscillations depicted
by blue (plane) surface and neutrino-antineutrino oscillations shown by pink (meshed) surface,
with the magnitude of S enhanced 10 times in the later case.
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8.2 Quantum correlations in neutrinos

Now the system of 2-flavour neutrino oscillations under the influence of neutrino-antineutrino
mixing, due to gravitational field, can be treated as a 4-qubit system. The occupation number rep-
resentation can be given as

|ψce⟩ ≡ |1⟩ē ⊗ |0⟩µ̄ ⊗ |0⟩e ⊗ |0⟩µ , (8.19)

|ψcµ⟩ ≡ |0⟩ē ⊗ |1⟩µ̄ ⊗ |0⟩e ⊗ |0⟩µ ,
|ψe⟩ ≡ |0⟩ē ⊗ |0⟩µ̄ ⊗ |1⟩e ⊗ |0⟩µ ,
|ψµ⟩ ≡ |0⟩ē ⊗ |0⟩µ̄ ⊗ |0⟩e ⊗ |1⟩µ .

Further, Mermin inequality is a generalized form of Bell inequality and its violation indi-
cates the standard nonlocal correlations existing among different parties in a multipartite system
[105]. This means that the probability distribution P (say for a tripartite system) cannot be written
in the local form

P (a1a2a3) =

∫
dλρ(λ)P1(a1|λ)P2(a2|λ)P3(a3|λ), (8.20)

where λ is the shared local variable and a1, a2, a3 are the outcomes of the measurements. However,
this does not ensure the genuine multipartite nonlocality, i.e., if any two subsystems are nonlocally
correlated, but uncorrelated from the third one, Mermin inequality can still be violated [209, 210].
To probe genuine nonlocal correlations, we make use of the Svetlichny inequality which is based
on hybrid nonlocal-local realism [106] as follows

PB(a1a2a3) =

3∑
k=1

Pk

∫
dλρij(λ)Pij(aiaj |λ)Pk(ak|λ). (8.21)

Here the subscript B stands for bipartition sections. For a 4-qubit-system the Mermin (M4) [240]
and Svetlichny (S4) [241] parameters are defined as

M4 = −ABCD + (ABCD′ +ABC ′D +AB′CD +A′BCD)

+ (ABC ′D′ +AB′CD′ +AB′C ′D +A′BCD′ +A′BC ′D

+A′B′CD)− (AB′C ′D′ +A′BC ′D′ +A′B′CD′

+A′B′C ′D)−A′B′C ′D′, (8.22)

S4 = ABC ′D′ +AB′CD′ +A′BCD′ −A′B′C ′D′+

A′B′CD′ +A′BC ′D′ +AB′C ′D′ −AB′C ′D′ +A′B′CD

+A′BC ′D +AB′C ′D −ABCD +ABC ′D +AB′CD+

A′BCD −A′B′C ′D. (8.23)

Here, X and X ′ (X = A,B,C,D), are two different measurement settings pertaining to each
qubit. The classical bounds on these parameters are M4 ≤ 4 and S4 ≤ 8. It is important to
note that for the violation of Mermin inequality, at least one bipartite section must have the non-
local correlations, while the Svetlichny inequality will be violated only when all the parties are
nonlocally correlated.

In Fig. 8.4, the variation of von-Neumann entropy (S) is depicted with respect to the
distance L traveled by neutrinos and the gravitational potential Bg

0 . In two flavour case the state of
the system has four degrees of freedom to oscillate between. With initial state as νe, oscillations
occur between νe, νµ, ν̄e and ν̄µ flavour modes of the system. Figure 8.4(a) depicts the total
flavour entropy with contribution from all the available modes of oscillation, while in Fig. 8.4(b)
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Figure 8.5: (a) Mermin M4 and (b) Svetlichny S4 parameters with respect to the distance (L) traveled
by neutrinos with Bg

0 = 5 × 10−2. Black lines correspond to the classical bounds of these
parameters.

the contribution from particle and antiparticle modes separately is shown. For the sake of clarity,
we have enhanced the magnitude of S by 10 times for antineutrino case. The particle degrees of
freedom contribute more to S in comparison to the antiparticle degrees of freedom. That is, the
neutrino-neutrino flavour mixing is dominating over the neutrino-antineutrino mixing. A common
feature depicted in Figs. 8.3 and 8.4 is that for neutrino-antineutrino oscillations, S decreases with
the increase in Bg

0 . However, for neutrino-neutrino mixing, the increase in Bg
0 does not reduce the

magnitude of S but increases the frequency of its oscillation.

Figure 8.5 depicts Mermin and Svetlichny parameters with respect to L, with Bg
0 =

5× 10−2 eV. The violation of the classical bound of M4 indicates the existence of residual nonlo-
cality in the system. Further, S4 does not cross the classical bound in our system, thereby showing
the absence of genuine nonlocality. This can be attributed to equality of the two mass squared dif-
ferences, i.e., ∆m2

41 = ∆m2
32 = 0, suppressing the nonlocal correlations between the degenerate

levels ν1 − ν4 and ν2 − ν3.
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