
4
Quantum Correlations in Neutrino

Oscillations

This chapter is based on the analysis made in Ref. [94]. Quantum correlations have been
studied previously in the neutrino-system in case of both two-flavour and three-flavour oscillation
scenarios [14–16, 18, 19, 21]. However, these analyses have taken into account the lack of knowl-
edge of the CP violating phase and the ambiguity in the sign of the third mass squared difference
∆m2

31. Further, the new physics effects beyond the standard model remain unprobed. Therefore,
in this work, the sensitivity of various spatial nonclassicality measures to the neutrino mass order-
ing and CP -violation has been investigated. In order to attempt such investigation, neutrinos are
treated as qubits in a way that we assume the three flavor neutrino oscillation picture equivalent
to a three-qubit system, and correlations such as entanglement have been studied between three
flavour-modes of single neutrino particle. For this study, the standard neutrino-matter interaction
has been incorporated. In section 4.1, we start with expressing the mode entanglement hidden
in neutrino dynamics by assigning occupation numbers to the neutrino states. Then, in section
4.2, variety of correlation measures have been analyzed for the system of three flavour neutrino
oscillations.

This analysis is carried out for parameters relevant to two ongoing experiments NOνA and
T2K, and also for the upcoming experiment DUNE. Various quantum correlations turn out to be
sensitive to the mass-hierarchy problem in neutrinos, elaborated in 4.2. This sensitivity is found
to be more prominent in DUNE experiment as compared to NOνA and T2K experiments. This
can be attributed to the large baseline and high energy of the DUNE experiment. Further, we find
that to probe these correlations, the neutrino (antineutrino) beam should be preferred if the sign of
mass square difference ∆31 turns out to be positive (negative).

4.1 Neutrino dynamics with mode entanglement
–Occupation number representation: In continuation with the dynamics of neutrino sys-

tem discussed in chapter 3, one can introduce the occupation number associated with a given
flavour or mass mode and a correspondence with three-qubit states can be established, such as
[15, 19, 206]

|νe⟩ ≡ |1⟩e |0⟩µ |0⟩τ

|νµ⟩ ≡ |0⟩e |1⟩µ |0⟩τ

|ντ ⟩ ≡ |0⟩e |0⟩µ |1⟩τ

flavour modes (4.1)
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|ν1⟩ ≡ |1⟩1 |0⟩2 |0⟩3

|ν2⟩ ≡ |0⟩1 |1⟩2 |0⟩3

|ν3⟩ ≡ |0⟩1 |0⟩2 |1⟩3

massive modes (4.2)

In Eq. (4.1), |n⟩α represents the n-th occupation number state of a neutrino in mode α
i.e., states |1⟩α and |0⟩α represent the presence and the absence, respectively, of neutrino in flavor
mode α. Hence, one can write the time evolved electron-neutrino state

|Ψe(t)⟩ = a(t) |νe⟩+ b(t) |νµ⟩+ c(t) |ντ ⟩ (4.3)

in the occupation number representation as

|Ψe(t)⟩ = a(t) |100⟩+ b(t) |010⟩+ c(t) |001⟩ . (4.4)

It is clear that entanglement will be established among flavor modes in the single-particle state.
The state of three-flavour neutrino can be considered equivalent to a three-qubit state where three
qubits represent three different flavours of neutrinos. This prescription is in fact very general and
can be applied to any n level system. The textbook example of a hydrogen atom in superposition
of |nk, lk,mk⟩, k = 1, 2, 3, could be written as Eq. (4.4) with the logical states |1, 0, 0⟩, |0, 1, 0⟩
and |0, 0, 1⟩ identified with |nk, lk,mk⟩ for k = 1, 2, and 3, respectively. It is important to men-
tion here that such states are difficult to sustain in atomic systems due to deteriorating effects from
system environment interactions. However, neutrino provides a self sustained example of such
states because of its weakly interacting nature; making it easy to probe various quantum correla-
tions among such states. In case of neutrinos, mode entanglement can be expressed in terms of
flavour transition probabilities, and therefore that single-particle entangled states acquire a precise
operational characterization in the context of particle mixing. Moreover, an experimental scheme
to transfer the quantum information encoded in single-neutrino states to spatially delocalized two-
flavor charged-lepton states has been discussed already in [15] where the single-particle entangled
states of neutrino mixing are represented as legitimate physical resources for quantum information
tasks.

The time evolved flavour state given in Eq. (4.3) can be viewed as an entangled superpo-
sition of flavour modes as in Eq. (4.4) with the time dependent coefficients given by Eq. (3.5).
Care should be taken in dealing with the above defined Fock representations in the flavour and
mass basis as they are unitarily inequivalent in the quantum field theoretic description of neutrino
oscillations [207]. Specifically, the unitary equivalence of the flavour and the mass state given in
Eq. (3.2), is not valid under the infinite volume approximation as the flavour and mass eigenstates
become orthogonal and the vacuum for definite flavour neutrinos can not be identified with the
vacuum state for definite mass neutrinos. However, in this work, ultra relativist approximation has
been taken into account, Eq. (3.7), under which the unitary equivalence holds and we can analyze
the various nonclassical witnesses viz., entanglement existing among different flavour modes in
a single particle setting. It would be interesting to investigate the behaviour of these witnesses
by incorporating various non trivial effects arising from the quantum field theoretic treatment of
neutrino oscillation viz, vacuum condensation [208].

In the next section, the behaviour of various quantum correlations has been analyzed in
the context of T2K, NOνA and upcoming DUNE experiment with specific experimental conditions
viz. baseline L and neutrino-energy E. These experimental facilities have been discussed before
in section 3.5 of chapter 3.
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4.2 Measures of Quantum Correlations in neutrino-system
The general form of Eq. (3.6), for initial state |να⟩, can be written as:

|Ψα(t)⟩ = ξ1(t) |νe⟩+ ξ2(t) |νµ⟩+ ξ3(t) |ντ ⟩ . (4.5)

with 
ξ1(t) = a(t), ξ2(t) = b(t), ξ3(t) = c(t), if α = e

ξ1(t) = d(t), ξ2(t) = e(t), ξ3(t) = f(t), if α = µ

ξ1(t) = g(t), ξ2(t) = h(t), ξ3(t) = k(t), if α = τ

(4.6)

where a(t), b(t), c(t) . . . k(t) are the elements of Uf matrix defined in Eq. (3.4) for
vacuum. In case of matter, the corresponding elements of the flavour evolution given in Eq. (3.16),
are used. Equivalently, Eq. (4.5) can be written in the occupation number representation as:

|Ψα(t)⟩ = ξ1(t) |100⟩+ ξ2(t) |010⟩+ ξ3(t) |001⟩ . (4.7)

With this general setting, we now discuss various facets of quantum correlation

1. Flavour Entropy: For the pure states in Eq. (4.7), the standard measure of entanglement is
given as [19]

S(|ξi|2) = −
3∑
i=1

|ξi|2 log2(|ξi|2)

−
3∑
i=1

(1− |ξi|2) log2(1− |ξi|2). (4.8)

This measure serves as a tool to probe the nonclassicality of the system. In the context of
neutrino oscillation, the flavour entropy parameter S = 0 for an initially prepared neutrino
state να (α = e, µ, τ ), and reaches its upper bound S = 1 for the maximally nonclassical
state in the W class 1√

3
(|100⟩+ |010⟩+ |001⟩)[42].

2. Tripartite geometric entanglement: Tripartite geometric entanglement G for the pure states,
given in Eq. (4.7), is defined as the cube of the geometric mean of Shannon entropy over
every bipartite section.

G = H(ξ1(t)
2)H(ξ2(t)

2)H(ξ3(t)
2), (4.9)

where H(p) ≡ −p log2(p) − (1 − p) log2(1 − p) is the bipartite entropy. This is a weaker
condition than genuine tripartite nonlocality discussed below. The genuine tripartite entan-
glement does not exist if G = 0.

3. Absolute and genuine tripartite nonlocality (Mermin and Svetlichny inequalities): The vio-
lation of a Bell type inequality (viz., CHSH) for a two qubit state is said to imply nonlocality.
A generalization to three party system is not straightforward. Mermin inequality is based on
the assumptions that all the three qubits are locally and realistically correlated; hence a viola-
tion would be a signature of the tripartite nonlocality shared among the qubits. It was shown
in [209, 210] that the biseparable states also violate the Mermin inequality. This motivated
Svetlichny to formulate a hybrid nonlocal-local realism based inequality, the Svetlichny in-
equality. A three qubit system may be nonlocal if nonclassical correlations exist between
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Figure 4.1: DUNE: The maximum of various quantum correlations such as Flavour entropy (First row), Ge-
ometric entanglement (second row), Mermin parameters (M1,M2) (third row) and Svetlichny
parameter (σ) (fourth row) depicted with respect to the CP violating phase δ for DUNE ex-
periment. The left and right panels pertain to the neutrino and antineutrino case, respectively.
Solid(blue) and dashed(red) curves correspond to the positive and negative signs of ∆m2

31,
respectively. The mixing angles and the squared mass differences used are θ12 = 33.48o,
θ23 = 42.3o, θ13 = 8.5o, ∆m2

21 = 7.5× 10−5eV 2, ∆m2
32 ≈ ∆m2

31 = 2.457× 10−3eV 2. The
energy range used is E = 1 − 10 GeV and the baseline used is 1300 km. The neutrinos pass
through a matter density of 2.8gm/cc.

two of the three qubits. Such a state would be absolute nonlocal and will violate Mermin
inequality [105] for a particular set of detector setting (A,B,C) and (A′,B′,C ′). The two
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Mermin inequalities are:

M1 ≡
〈
ABC ′ +AB′C +A′BC −A′B′C ′〉 ≤ 2,

M2 ≡
〈
ABC −A′B′C −A′BC ′ −AB′C ′〉 ≤ 2.

(4.10)

However, a violation of Mermin inequality does not necessarily imply genuine tripartite
nonlocality. A state violating a Mermin inequality may fail to violate a Svetlichny inequality,
which provides a sufficient condition for genuine tripartite nonlocality [106] and is given by

σ ≡M1 +M2 ≤ 4. (4.11)
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Figure 4.2: NOνA: Quantum correlations such as Flavour entropy (first), Geometric entanglement (second),
Mermin parameter (M1,M2) (third) and Sevtlichny parameter (σ) (fourth) parameters, plotted
with respect to the CP violating phase δ for NOνA experiment for the case of neutrinos. The
energy is varied between 1.5− 4 GeV and the baseline is taken as 810 km. The various mixing
angles and squared mass differences used are the same as for Fig. 4.1.

For DUNE experiment, Fig. 4.1 depicts the variation of the maximum of various quan-
tum witnesses like flavour entropy, geometric entanglement, Mermin parameters (M1, M2) and
Svetlichny parameter (σ) with respect to the CP violating phase δ, for the case of neutrino (first
column) and antineutrino (second column), respectively. It can be seen that all the witnesses show
different characteristics for the positive and negative signs of large mass square difference ∆m2

31.
Figures 4.2 and 4.3 depict the same for ongoing NOνA and T2K experiments, for neutrino beam.
The corresponding antineutrino plots show similar features, such as inversion of mass ordering, as
in the DUNE plots and hence are not depicted here.

A general feature observed in these results is that the different measures of nonclassicality
are sensitive to the sign of ∆m2

31. The distinction being more prominent in DUNE experiment
compared to the NOνA and T2K experiments. This can be attributed to the high energy and long
baseline of the DUNE experiment.

The quantum correlation measures studied in this work can attain their upper bounds for
some specific values of L/E [19]. In the present study, however, by taking into account the matter
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Figure 4.3: T2K: Showing Flavour entropy (first), Geometric entanglement (second), Mermin parameter
(M1,M2) (third) and Sevtlichny parameter (σ) (fourth) parameters, as function of the CP
violating phase δ. The energy is taken between 0.1− 1 GeV and the baseline is 295 km.

effects and CP violation, we are restricting L/E within the experimentally allowed range; conse-
quently the various nonclassical measures do not reach their maximum allowed values. Mermin
inequalities are violated for all values of δ which means that if one of the three parties is traced out,
still there will be residual nonlocality in the system. Violation of the Svetlichny inequality reflects
the nonlocal correlation between every subsystem of the tripartite system. To achieve significant
violation of correlation measures one should use neutrino-beam if the sign of ∆m2

31 is positive
(normal mass ordering), while antineutrino-beam should be used in case of negative sign of ∆m2

31

(inverted mass ordering).

From the definitions of flavour entropy (Eq. (4.8)) and geometric entanglement (Eq. (4.9)),
it is clear that these are measurable quantities since these can be expressed in terms of survival
and oscillation probabilities making them suitable for experimental verification. Expressing the
Mermin and Svetlichny parameters in terms of these measurable quantities is a nontrivial task.
However, guided by the previous work [18], where the measures of quantum correlations viz. Bell-
CHSH inequality, teleportation fidelity and geometric discord were expressed in terms of survival
and transition probabilities for two flavour neutrino-system, it could be possible to perform such an
exercise for Mermin and Svetlichny parameters in the context of three flavour neutrino oscillations.

The parameter δ which appears in the complex PMNS mixing matrix causes CP and T -
violation in neutrino sector and the determination of its value, along with the issue of determining
the neutrino mass ordering, is still an open challenge for oscillation experiments. In neutrino
oscillation scenario, CP -violation can be observed as a non-zero value of ∆CP = P (να →
νβ)−P (ν̄α → ν̄β) and the T -violation is observed in terms of ∆T = P (να → νβ)−P (νβ → να).
Under the assumption of CPT -conservation, ∆CP and ∆T are equal, while different values of
∆CP and ∆T can signify pronounced CPT -violation. Hence, the separate observations of ∆CP
and ∆T are crucial.
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However, one should notice that in this thesis we have focused mainly on the problem
of disentangling the neutrino mass ordering effects. Our results exhibit that the determination of
neutrino mass ordering by the observation of correlation measures can be obtained regardless the
value of δ parameter. This is true for DUNE experimental setup where the matter effect is quite
significant. For NOνA (with slightly smaller matter effect) one can still find the δ-ranges that
allow the discrimination between normal and inverted mass ordering. In case of T2K, such ranges
of δ could not be found.

Moreover, the correlation measures studied here are found to be sensitive to the δ-parameter
that provides a scope of finding the value of this parameter from the observation of these correlation
quantities. However, it can be a non-trivial task to determine the δ-value in the context of current
oscillation experimental setups, where neutrinos undergo significant matter density potentials, due
to the presence of matter induced extrinsic CP and T -violating effects [211–213].
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