
5
Floor plan interpretation in natural language using

machine learning techniques

In Chapter 4, understanding of a floor plan image and generating textual description from
it was discussed. The floor plans used, were annotated and efficient OCR techniques were used
to extract information from them. However, while considering un-annotated floor plans, OCR
techniques can not be used. In that case some advance level learning based model is required and
consequently some robust feature representation of floor plans becomes key requirement. In a wide
perspective, feature engineering approaches are categorised into two classes: hand-crafted features
and machine learnt features (advance deep learning models). Floor plan understanding requires a
holistic representation of the entire plan in the form of features. The current available hand-crafted
features in literature for image representation are designed to represent natural images. Also, in
case of line drawings, the hand-crafted features are more suitable for representing symbols and
other graphics. They are not suitable for representation of the entire floor plans. Hence, a feature
representation was required which could fulfill following requirements of floor plan understanding:
(1) Should be able to capture low level information such as decor, walls, doors. (2) Should be
able to capture holistic information such as different room names and difference between their
representations.

Hence apart from understanding a floor plan with annotated data, we propose their feature
representations for annotations learning model for general floor plan images. Since, detection and
classification of decor components is also an important step in floor plan understanding, we also
propose a signature based algorithm for decor identification. In this chapter we propose technique,
SUGAMAN (Supervised and Unified framework using Grammar and Annotation Model for Access
and Navigation), to understand and describe un-annotated general floor plan image by proposing
a learning based model.

SUGAMAN is a Hindi word which translates to easy passage from one place to another.
Apart from describing the general information about the floor plan images, it also generates room
to room navigation information, while avoiding the obstacles. This navigation information can
be very useful for visually impaired people as it becomes difficult for them to move in an indoor
environment. It will be really helpful for them if there is a system that tells about the surroundings
environment in natural language. SUGAMAN generates such natural language description of an
indoor environment from building floor plan images, which gives a detailed idea of the indoor
environment. Here the input is a building floor plan image and the output is a textual description
of the same. The description includes detail about the (i) rooms, (ii) connectivity among the
rooms, (iii) type of decor within every room, and (iv) their relative position, and (v) navigational
information, while avoiding obstacles.

Figure 5.1 exemplifies the problem and the potential solution for a real-world floor plan
images. It also depicts the navigation path to be generated and to be textually described. The key
characteristics that makes this work unique are: (i) proposing a unified framework for narration
synthesis from floor plan images, (ii) improvement in the previously available techniques for decor
characterization, (iii) proposal of novel features to represent a room within a floor plan, (iv) learning
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Figure 5.1 : An illustration of the problem of narration synthesis from a given input floor plan image
with navigation path.

the room annotations for room classification, and (v) augmentation of an publicly available dataset
by annotating floor plan images with textual descriptions. In rest of the chapter, Sec. 5.1 gives
a brief overview of the methodology proposed, Sec. 5.2 describes about the dataset in floor plan
images and dataset used for experiments in proposed method, Sec. 5.3 describes the detection
and identification of each component in the floor plan image, including the proposed features
and room classification, Sec. 5.4 gives details about the steps involved in description generation
scheme and algorithm for finding door to door obstacle avoidance navigation path, Sec. 5.5 gives
detailed analysis of each intermediate step along with experiments performed, Sec. 5.6 discusses
the qualitative results of description generation and the limitations of proposed features, Sec. 5.7
discusses the comparative analysis of decor identification method and navigation algorithm proposed
and Sec. 5.8 concludes the chapter also drawing outline for future directions.

Figure 5.2 : Block diagram depicting various modules and work-flow within SUGAMAN.
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5.1 BRIEF OVERVIEW

Figure 5.2 shows a block diagram depicting various modules and work-flow within
SUGAMAN. The whole system is divided into two stages (i) room annotation learning and (ii)
description synthesis. At first, room semantic information is extracted by room segmentation
process, which gives all the required information about an input floor plan image. For example,
individual room area, door information which gives room neighborhood information, room locations
(room coordinates). With those room locations, the floor plan image is partitioned into individual
room image and taken as sample for room annotations learning. Decor characterization is applied
over these room images and decors present in a room are labeled. We have proposed Bag of Decor
(BoD) and Local Orientation and Frequency Descriptor (LOFD) features, which are extracted from
these room samples for automatic room annotation. A classifier is trained using these proposed
feature matrix of room samples by assigning class labels to them. After this a new input image
is taken as a test sample, features are extracted and room annotations are identified for it using
previously trained model. An XML file is generated using the semantic information extracted
by room segmentation and room classification. By parsing this XML file, textual description is
generated. SUGAMAN also gives navigation path within the entire floor plan, starting from the
entry door to the building. All such information about floor plan and navigation are fed to the
proposed grammar model. The first stage of the proposed description synthesis method deals with
“what to say” about the floor plan and the second stage will deal with “how to say it”. For ease
of understanding, in rest of the chapter, we demonstrate all our analysis on the input image shown
in Fig. 5.1. Later, in the experimental results, we also show the results on other floor plan images.
Next we discuss about the dataset used for experimentation.

5.2 FLOOR PLAN DATASET

In the literature, three floor plan datasets were proposed, namely (i) Systems Evaluation
SYnthetic Documents (SESYD), proposed by Delalandre et al. [2010] (ii) Computer Vision Center
Floor Plan (CVC-FP), proposed by de las Heras et al. [2015] and (iii) Repository Of BuildIng
plaNs (ROBIN), proposed by Sharma et al. [2017]. SESYD has ten classes of floor plans, with 100
samples/class. On the other hand, CVC-FP has 122 scanned floor plan documents divided into
four categories based on the origin and style. In ROBIN there are three broad categories, which
are different from each other in terms of the number and type of rooms present in a floor plan.
The three categories are (i) 3 room, (iv) 4 room, and 5 room floor plans. Each category is further
classified into 10 sub-categories depending upon the global layout of the floor plan. ROBIN helps
in better visualization of the floor plans and aids in efficient capturing of various high-level features
while fine-grained retrieval. Since ROBIN has significant number of floor plans, as well as intra-class
similarity and inter-class dissimilarity, it is suitable in our case. However, in ROBIN there is no
textual description available for a given floor plan. For our purpose we further augmented ROBIN
dataset by introducing textual description for each floor plan image and termed it A-ROBIN as
described in Chapter 3.

5.3 SEMANTIC SEGMENTATION AND ROOM CLASSIFICATION

In all the previous approaches available in the literature, rooms have been classified by
recognizing the textual label present in the floor plan image using Optical Character Recognition
(OCR) techniques. Room classification in floor plans is not done by extracting salient feature from
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Figure 5.3 : An illustration of the room segmentation and room partitioning process.

it. Room classification on the basis of their functionality is very useful in building information
modelling (BIM). When a person enters a room in a house, he or she tells the functionality
(class) of the room by looking at the decor items present inside the room. This inspired us to
propose a unique feature for room classification. We have proposed new features called Bag of
Decors(BoD), which represents the frequency of decors present in a room and Local Orientation
and Frequency Descriptor (LOFD), which represents the frequency of decors present in a room
along with their normalized distance from the center of the room. We proposed room classification
approach as a 5 class classification problem, which annotates each room in a floor plan into one of
the 5 classes namely, BEDROOM (label-1), BATHROOM (label-2), ENTRY (label-3), KITCHEN
(label-4), HALL (label-5). The following subsections describes the details of room label learning
and classification.

5.3.1 Room Segmentation

We have adopted the technique proposed in D. Sharma, C. Chattopadhyay and G. Harit
[2016] for the identification of rooms. Walls are detected by performing morphological closing on
the input floor plan image I (see Fig. 5.3(c)). To delineate room boundaries, we detect doors

Figure 5.4 : Pictorial depiction of the twelve classes of decor models used in the experiments.
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using scale invariant features and close the gaps in wall image corresponding to the door locations.
To obtain the rooms, we identified the connected components in the wall image by applying flood
fill technique. The obtained connected components are the required rooms and their locations are
obtained. Also, we calculate the areas of the respective rooms (polygon area), converted them into
square feet (taking 100 pixels= 1 feet) and store all the information obtained, that is neighborhood,
room area, room location coordinates, in a separate data structure.

5.3.2 Floor Plan Partitioning

A floor plan image is partitioned into rooms using the room coordinates extracted from the
previous steps as shown in Fig. 5.3(d). These individual room images are the samples taken for
training the room annotations. We have applied decor characterization in further stages on each of
these individual room images to extract the features.

5.3.3 Decor Classification

In this section we describe the procedure employed for decor characterization and their
classification. Figure 5.4 shows the 12 decor symbols used in the dataset proposed in, Sharma
et al. [2017]. We have improved the technique of decor characterization proposed in D. Sharma,
C. Chattopadhyay and G. Harit [2016] by applying sequence of morphological operations. The
technique in D. Sharma, C. Chattopadhyay and G. Harit [2016] uses a normalized area ratio of
largest three components of a decor symbol for classification and characterization of decors. We
have improved the technique by first collecting 10 different signatures for each symbol, taking a
mean over them (symbols with different orientations) and stored them in a signature library. During
classification, we first pre-process the symbol by applying a sequence of morphological operations
(erosion and dilation), so that the symbol do not have broken lines. Then we applied blob detection
over the image an cropped each decor symbol for signature comparison. Now we compare the test
image’s signature with the signature stored in library and closest one is classified in its respective
category. This modification in the technique greatly improved the classification accuracy for some
symbols. Figure. 5.3 (b) depicts the detection of symbols in the floor plan input image Fig.
5.3 (a) with bounding boxes. These decors are classified in their respective categories shown in
Fig. 5.4. The signature of the decor symbols if represented by a proposed feature Unique Decor
Identifier (UDI), calculated by Alg. 2. This UDI feature is a set of area ratios of three largest
connected components in a decor symbol. The decor library is created using the signature function
by computing UDI of 10 different symbols and taking an average over it. The formulation of the
UDI feature is governed by the following equation:

Fi = ∑ f j

10
,where j=1...10, i=1...12 (5.1)

F = {F1,F2, ...,F12}

Our decor characterization method calculates UDI feature of the decor items in sample
room images and compares it with the UDI feature present in decor template library. The decor
having closest UDI with decor item present in the library, corresponding decor is assigned to it.
The cropped room image is given as input and walls are removed from it. After that morphological
filling is applied to join the broken lines of the symbols. Each decor symbol is cropped from the
image and given for UDI identification, which is further compared with UDI present in decor library
and closest decor is assigned to it. Before evaluating UDI of decor items, blob detection is applied
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Figure 5.5 : Qualitative comparison between ours and D. Sharma, C. Chattopadhyay and G. Harit
[2016] for the task of Decor identification.

over image and number of decor items present is calculated.

Figure 5.5(b)-(d) shows the intermediate processing stages of our proposed model. We have
applied erosion with structuring element of size 8, followed by dilation. However, the number of
times should these morphological operations be applied has an effect on the overall result. Figure
5.5(e) shows the over application of filling operations and results in fading of symbols.

5.3.4 Bag of Decor (BoD)

Once the decors inside a room are recognized, we compute the representative features to
classify the room. For room classification, we proposed a new feature named Bag of Decor (BoD).
It is a 1× 12 vector containing the decor information of a room sample. Since there are 12 decor
models, every element of this vector represent the count of one decor item. However it is not
necessary for any room to have all types of decor present, therefore BoD is sparse in nature. Figure
5.6 shows the feature vector for the room shown as inset. In this example, the room has three types
of decors, 3 sofas, 2 tables, and 2 chairs. As shown schematically in Fig. 5.6, the BoD feature
vector has the count of the specific type of furniture, while the other bins are assigned a value of
zero. After the room classification, this room is classified as ENTRY having 2 small sofas, 3 large
sofas and 2 arm chairs.

5.3.5 Local Orientation and Frequency descriptor (LOFD)

Another feature which is proposed for room classification, named Local Orientation and
Frequency descriptor (LOFD) along with BoD. BoD only captures the frequency count of decor
components, while LOFD also captures their respective orientations inside a room for a more

Algorithm 2 UDI Computation
1: procedure Signature(J)
2: C =CC(J) ▷ CC:Connected components
3: Count = |C| ▷ | |: Cardinality of connected components
4: for k=1 to Count do
5: Ak = Area(ck), where ck ∈C
6: A = SortdescAk
7: F(J) = {(A1/A3),(A2/A3),1} ▷F : Signature
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Figure 5.6 : An example of a Bag of Decor (BoD) feature descriptor computed for a sample room
image.

Figure 5.7 : AN schematic illustration of computing the LOFD descriptor for four sample room images.

descriptive building information modelling. The LOFD feature is a 1× 24 vector containing the
decor information of a room sample and their locally aggregated spatial information. Figure. 5.7
shows the LOFD feature matrix for the sample floor plan image. In LOFD, we have aggregated
the local information of the room image in a vector form. LOFD is compact representation of the
frequency of the decor items and normalized distance of their centers from center of the room. The
first 12 cells of the vectors are occupied by the 12 decor items from D = {D1,D2, ...D12} and next
12 cells are occupied by their normalized distances as D = {d1,d2, ...d12} where dn is the distance of
each decor item from the center of the room. Here, dn is calculated as:

dn =
∑k

i=1 dist(Rc,Dc)

max(Dn)
(5.2)

Here, dn is the normalized distance for each decor item, i is the count of each decor which may go
up to k, which is the maximum number of a that decor item in the room, dist is the Manhattan
distance between room center Rc and decor center Dc, max(Dn) is the maximum of all the distances
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Figure 5.8 : Schematic representation of automatic room label classification.

obtained for all decors to normalize the distance value. Hence, LOFD feature distinguishes each
room uniquely by the frequency of each decor item and their spatial location in the room.

Since there are 12 decor models as shown in Fig. 5.4, first 12 element of LOFD represents
the count of one decor item. However, it is not necessary for any room to have all types of decor
present, therefore LOFD is sparse in nature. Figure 5.7 depicts the room image followed by the
corresponding LOFD feature vector. The colored bar over each cell represents the frequency count
for each decor item, while arrows in red represent their relative spatial location in the room. In
the next section, training of the classifier using the features proposed for room classification is
explained.

5.3.6 Room annotation Learning and Room classification

Room annotations for training samples (divided 1355 room images into 70% and 30% for
training and testing respectively) are learned by the two proposed features and classified into
predefined categories. For training purpose, we have manually annotated the room samples and used
those annotations during training. Extensive experiments were performed using various classifiers
and the best classifier in term of highest training accuracy is taken for testing the model. For
testing purpose, an image from the test set is taken and class labels are evaluated accordingly for
the room samples of that floor plan image. For each new test floor plan image, the feature vector
is evaluated for every room. Therefore, dimension of the feature matrix for a test floor plan image
will be Nr×DimF where Nr is the number of rooms in the floor plan and DimF is the dimension of
the feature vector. Trained classifier is used for this feature matrix and the output class labels are
evaluated. Figure 5.8 represents a schematic diagram of room annotation learning and classification
in different classes with the proposed features.
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Figure 5.9 : Structure of the XML file generated for description synthesis.

5.4 DESCRIPTION SYNTHESIS

Rooms are classified and their annotations are learned in Sec.5.3.6. Information extracted
from room segmentation are combined and used for generating the description of the floor plan
image. Information related to individual rooms are combined and stored in an XML file, which is
parsed to generate description of the floor plan.

5.4.1 XML File generation

An XML file has many benefits in terms of cross platform portability, ease of understanding
by novices, and extendability. We have created an XML file by combining the semantic information
extracted from room segmentation and room annotations learned in previous steps. As shown in
Fig. 5.9, the tree-like structure of XML file contains “Room details” as the root node at level
0, “Room names” as nodes at level 1, and information of rooms as nodes at level 2 (leaf nodes),
which are Room ID, Room annotations, Room area, Room Coordinates, Room neighbors and Room
Decors. Apart from room annotations, a room ID is given to each room since room annotations
can be same for two rooms. to generate a description.

Figure 5.10 : An example of the boundary tracing process for different values of the shrinkage factor
t.
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Figure 5.11 : An illustration of the global and local coordinate systems with respect to a floor plan
image.

5.4.2 Coordinates systems

For defining the positions of rooms and decors present in the floor plan, we have defined
two coordinate systems. The global coordinate system is to identify the global location of rooms
with respect to the entire document. Local coordinate system is to define the relative position of
decors with respect to each room.

Boundary Tracing

The origin of the global coordinate system is the polygon center, which makes the floor plan’s
boundary. A floor plan’s boundary is traced to identify the center of the floor plan. Individual
rooms’ coordinates are plotted to trace the boundary, and the outer boundary is tracked, which
encloses all the outer points since these points collectively make the floor plan image. However,
by tuning the value of shrinkage factor t between 0 and 1 we can switch between a convex hull
of those points and a more close-knit boundary. The shrinkage factor defines how closely the hull
envelops the boundary points. For example, in Fig. 5.10 (a), the boundary traced is a convex hull
of the floor plan image for the shrinking factor value t = 0, Fig. 5.10 (b) is the traced boundary for
shrinking factor value t = 0.5 and Fig. 5.10 (c) is the close-knit boundary for t = 0.8. Therefore, by
tuning the shrinking factor value, we obtain a close-knit boundary for the floor plan image.

Global and local coordinate systems

A global coordinate system defines the global position of all the rooms in a floor plan image
(see Fig. 5.11 (b)). From the traced boundary obtained in the previous step, we calculate the global
coordinate system’s origin. Equation 5.3 and 5.4 lists the governing equations.
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Figure 5.12 : A schematic representation of the non-uniform and uniform binning.

ai = xiyi+1− xi+1yi (5.3)

A =
1
2

n

∑
1

ai

Where, ai in Eq. 5.3 is twice the signed area of the elementary triangle formed by (xi,yi)
and (xi+1,yi+1) and the origin. A in Eq. 5.3 is the area of the polygon.

xc =
1

6A

n

∑
1

ai(xi + xi+1) (5.4)

yc =
1

6A

n

∑
1

ai(yi + yi+1)

In Eq. 5.4, (xc,yc) is the center of the polygon. The local coordinate system (see Fig. 5.11
(a)) identifies the relative positions of all decors with respect to each room. Center of each room,
for a local coordinate system is computed using Eq. 5.3 and 5.4.

5.4.3 Binning

We have performed global and local binning or radial partitioning of the floor plan (see Fig.
5.12). The nonuniform binning angles were empirically determined. For identifying the direction
of decor, the center of the surrounding bounding box is taken as the reference point. While for
the rooms, their respective centers, obtained in the previous steps is taken as a reference point.
As shown in the Fig. 5.12(a), the entire coordinate system is divided into 8 directions, north,
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Figure 5.13 : A visual illustration for explaining the rationale of non-uniform binning.

north-east, east, south-east, south, south-west, west, north-west, in the clockwise direction. The
binning depicted in Fig. 5.12(a) is a nonuniform binning, while in Fig. 5.12(b) is a uniform binning.

The rationale behind non-uniform binning is to provide a piece of more realistic direction
information for rooms and decors. The idea of taking the direction from the center of the
surrounding polygon may misguide the framework about the actual position of a room. E.g., if
a room is located in the west direction and stretches towards the north, its center will lie in a
northwest direction even if the room is in the west. To avoid these kinds of ambiguities, binning is
done non uniformly, and the angles are empirically taken. Figure 5.13 highlights examples for the
above rationale. The highlighted room (Fig: 5.13 (a)) is more toward the east direction. However, it
is also extended towards the south. With nonuniform binning, we try to increase the east direction
span, showing a purple line and an arc where (θ1 +θ2) is the angle of nonuniform binning. The red
line and arc show the span of uniform binning, making the room fall in the southeast direction and
creates ambiguity. Here θ1 is the angle of uniform binning, C1 and C2 are the centers for floor plan
and room, respectively.

5.4.4 Navigation

Navigation in the indoor environment by avoiding obstacles is an integral part of
SUGAMAN. We have proposed a grammar-based model that yields navigational directives to
navigate the house for a natural movement from one door to the other door of each room. The
algorithm is divided into two parts. First, we create a data structure that stores the room labels and
their respective entries and corresponding indexes. The room information and the door coordinates
are obtained from semantic segmentation in the earlier stages (see Sec. 5.3.1). If a door is shared
between two rooms, that door will be present in both room’s door structures, and the index will
represent the door’s identity. Next, we identify the entry room and the corresponding door and
generate a Depth First Search (DFS) ordering of the region adjacency graph of the floor plan
taking the entry room as the start node. After that, a path to the next room is generated, avoiding
obstacles by checking the visibility from the first door to the other. We also create a door-based
adjacency matrix (AMD), which stores the rooms’ shared doors.
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Creating door structure

The room coordinates, room labels, and door coordinates are obtained in the semantic
segmentation. After that, an index id is assigned to each door. We have checked whether a given
door id belongs to a particular room or not. We have performed an inside-outside test between the
bounding polygons of the doors and rooms to achieve belongingness. The door structure contains
each room with its corresponding doors having marked with their index id . As shown in Fig.
5.14(b), room and door information is stored in a door structure.

Algorithm 3 Room-to-Room traversal within a floor plan
1: for i← 1,Nr−1 do ▷ Nr: No of rooms
2: Backtrack← 0
3: cr← i ▷ cr:Current room
4: nr← i+1 ▷ nr:Next room
5: if AMD(cr,nr) == 1 then
6: if Backtrack ̸= 1 then
7: DC←ClassifyDecor(Ri) ▷ Ri:Room Image
8: VL←{DC} ▷ VL: Vertex list
9: D←DetectDoorCentroid(Ri)

10: VL←VL
⋃

D
11: Rnew

i ←RemoveDoors(Ri)
12: B← Blobs(Rnew

i )
13: Corners←HarrisCorner(B)
14: CS← Strongest(Corners)
15: VL←VL

⋃
CS

16: for j← 1,NVL do ▷ NVL : No. of elements in VL

17: for k← 1,NVL do
18: visible←Visible(VL( j),VL(k),Rnew

i )
19: if visible then
20: AMi

N( j,k)←ED(VL( j),VL(k))
21: else
22: AMi

N( j,k)← 0
23: end if
24: end for
25: end for
26: DE ← Rcr(Entry)
27: DX ← Rnr(Entry)
28: end if
29: Path(i)←Disjkstra(AMi

N ,DE ,DX)
30: else
31: Backtrack← 1
32: DE ← Rcr(Exit)
33: cr← cr−1
34: goto Step 6
35: end if
36: end for
37: return Path ▷ Path to go to every room from the entry =0
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Path Finding

DFS search is performed over the floor plan image’s region adjacency graph, taking the
entry room as starting node. The door connected to the entry room’s outer wall is considered the
entry door and stored in the door structure. Here, the entry door for the house is detected by the
the algorithm discussed in S. Goyal, C. Chattopadhyay, and G. Bhatnagar [2018]. Algorithm 3
describes the process of room to room navigation by obstacle avoidance. The route in each room is
stored in the form of coordinates (x,y) of the movement and included in the description for narration
of the path. Algorithm 3 traverses the rooms starting from the first room in the DFS graph by
checking if there is a door shared between them. This is checked by door-based adjacency matrix
(AMD). Suppose they do not share an entry, the algorithm backtrack and explore other rooms. Also,
it determines the route across the rooms for navigation. In Alg. 3, line 2 declares the flag, if the
algorithm has to enter into backtracking. Line 4 describes the loop which traverses room to room,
finding the path. Line 6, algorithm checks if there is a shared door between the current room and
the next room and continues traversal between rooms if there is a shared door. Line 7 directs the
algorithm to further processing if backtracking is not required. Line 8 to 8, detects the coordinates
of the bounding box of decor items and centroid of doors of the current room and include them in a
vertex list. In 9, doors are removed from the room image because they are not required for avoiding
obstacles. Lines 10 to 15 detect the corner points in the room image using Harris corner detector
after detecting the blobs and include top 1000 strongest corners in the vertex list. Line 16 to line
22 describes the construction of adjacency matrix for navigation (AMN). It checks the visibility
between every point in the vertex list and includes the Euclidean distance between them in AMN as
the weight at AMN(VL(j),VL(k)). Visibility between two points is checked by filling the line between
equal intervals in those points and checking if there is a black pixel present. If there is a black pixel
present, then there must be an obstacle between those two points, and hence those points are not
visible. AMN(VL(j),VL(k)) will have a 0 in that case. Line 26 and 27 define the entry (DE) and exit
(DX) door for the current traversal, where the entry door is the entry of the current room and exit
door is the entry of the next room. Line 29 evaluates a route (Pi) for current traversal by applying
Dijkstra’s shortest path algorithm over AMN taking DE and DX as start and end nodes. Line 31 to
34 defines the backtracking process if there is no shared door found between the current room and
next room. The algorithm will backtrack in the DFS path and find the navigation path between
corresponding rooms. The route for ith room (Pi) is a set of coordinates containing the start point,
endpoint, and intermediate turns that a person has to make for obstacle avoidance. Figure. 5.14
describes the entire process for the input image Fig. 5.14(a). The checkered box (inset) depicts
AMD, where the dark box represents a 0, and a white box represents a 1.

Figure. 5.14(b) shows the door structure created in the previous step and traversal order
with backtrack step. Figure 5.14(c) shows the DFS search graph generated over the region adjacency
matrix to obtain the order to traverse each room. Figure 5.14(d) shows the local coordinate
system fitted over every point in a route while traveling through the floor plan and also shows
the direction of movement by arrows. Figure 5.15(a) represents the door to door path generated
for navigation, avoiding obstacles in each room in the input image. Figure 5.15 shows some other
examples describing the path generated with various floor plan images.

5.4.5 Proximity based sentence model

The XML file’s parsing yields 5 types of information for each room, defined in separate
sentences; room name, area, neighboring rooms, global position, and contained decors with their
relative position in the room. For that purpose, we defined the sentence model having 6 rules based
on proximity, as shown in Tab. 5.1. The first sentence (S1) of every floor plan description is a
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Figure 5.14 : Illustration of path detection process.

general sentence stating the number of rooms (Nr) in the floor plan. In S2, DT is a determiner
that takes its value from the set {a, an}. In addition, Oi is the object which takes its value from
level 1 nodes (Room names), where value i varies from 1 to Nr. In S3, AREA takes its value from
the RoomArea tag when XML file is parsed. In S4, s takes its value from the set {s,ϕ}, which is a
proximity-based value depends upon its previous word. Value s is chosen if the word in proximity
(room) is plural and ϕ otherwise. Also, AUX is an auxiliary verb, which takes its value from {is,
are}, depending upon its proximity word, and NR j takes its value from Neighbors tag (neighboring
rooms) when the XML file is parsed. Here, the value of j varies from 1 to NNr, which is the number
of neighboring rooms. In S5, LOC is the room’s global position, which takes its value from the
set {North, North East, East, South East, South, South West, West, North West} described by
binning. In S6, the value of k varies from 1 to DC i.e. decor count. Here, C is the count of individual
decor item, D takes its value from the Decor tag in XML file, s takes its value from {s,ϕ} and DLOC
is the relative location of decor in the room which takes its value from {North, North East, East,
South East, South, South West, West, North West} described by binning.

S7 is the sentence narrating the navigation, where Nstep is the number of steps to be taken.
We took the Euclidean distance between the first coordinate and the next coordinate in the route
to calculate the number of steps and calibrate the distance into steps (10 pixels= 1 step). Also,
DIR is the direction in which the person has to move, for which the local coordinate system is being
fit to every coordinate of the route. It takes its values from the set {North, North East, East,

Figure 5.15 : Examples illustrating path detection by avoiding obstacles.
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Table 5.1 : Sentence model based on proximity

Sentence Rule
S1 This floor plan has Nr rooms
S2 There is DT Oi

S3 It has an area of AREA
S4 Its neighboring room{s} AUX NR j

S5 It is located in the LOC
S6 This room has {C D{s} at the DLOC}k

S7 {{ Go Nstep steps in DIR direction }Nm}Nr

S8 There is a door and a room. {S9}i f dead end
{S7}else.

S9 You have to turn back.

South East, South, South West, West, North West}. The number of coordinates returned in the
navigation route inside a room is the number of turns a person will have to make. Here Nm is the
number of turns inside a room, and Nr is the number of rooms. S8 describes the door and room
found after navigating through the previous room. If the room has only one entry and hence a dead
end, the person will turn back and navigate further (S9), else he will go straight and explore the
other rooms by entering (S7).

5.5 ANALYSIS OF INTERMEDIATE STEPS

We have performed our experiments on a hardware platform with the following
configurations. The system has an Intel core i7 (8th generation), with a 1.87 GHz processor. It has
a memory of 8 GB where, implementation has been done on Matlab 16a.

Table 5.2 : Classifiers results of room annotation learning by BoD feature.

Variant Training Testing Testing Training Testing
(R) (R) (S) (R+S) (R+S)
(%) (%) (%) (%) (%)

linear svm 89.2 80.00 66.51 89 76.41
Quadratic SVM OVA 89.0 78.67 64.62 90.8 76.92

Cubic SVM OVO 88.6 79.56 55.19 88.7 74.70
Medium Gaussian SVM 88.7 78.44 58.96 89.3 75.21
Quadratic SVM OVO 88.2 80.44 65.57 89.7 75.90

5.5.1 Room annotation learning and Classification

For this task, a dataset of 1355 room images divided into 70% and 30% for training and
testing, respectively. The two features proposed (see Sec. 5.3.4 and Sec. 5.3.5) are used to train a
multi-layered perceptron (1 hidden layer with 10 neurons).
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Table 5.3 : Classifier-Results of room annotation learning by LOFD feature.

Variant Training Testing Testing Training Testing
(R) (R) (S) (R+S) (R+S)
(%) (%) (%) (%) (%)

Linear 90.1 78 66.04 89.1 73.4
Quadratic 87.8 79 60 91.6 78.4
Cubic 87.8 77.1 63 91.2 76.6
Medium Gauss 88.3 76.7 58 90.5 75.3
Quadratic 87.1 77.1 60 90.9 74.2
Complex Tree 88.3 76.4 65.6 88.7 73

BoD classifier

Table 5.2 shows the comparative analysis of different classifiers using BoD classifier in which
the first column shows the training results using 1355 room images taken from ROBIN dataset
(denoted as R), and the linear SVM gives the highest training accuracy. In the second column,
testing is done using samples taken from ROBIN. In the third column, test results are shown for
SESYD samples (denoted as S) by a trained ROBIN image model, which is comparatively low.
Experiments are done by training the classifier using mixed samples from both datasets using 1940
images and training and testing accuracy shown in the fourth and fifth columns. It can be easily
noted that the testing accuracy is considerably increased with this model. Figure 5.17(a) shows
the experiment of room annotation learning with the neural network using BoD classifier, showing
the training, testing, and validation accuracy achieved. In addition Fig. 5.16 (a) shows the ROC
curves for training, testing and validation.

It is indicative that we achieved the best validation at 30th epoch of the training cycle. It
is clear from the test ROC that class 5 samples have minimum testing accuracy. The curve moves
much away from the upper left corner and goes below the diagonal line (moving towards the false
positive axis). We can also see that class 1 samples have maximum training accuracy from the
training ROC curve. The curve remains concentrated in the upper left corner (moving towards
the true positive axis). Low training and testing accuracy for class 5 samples result from its less
number of samples.

LOFD classifier:

Figure 5.16(b) shows the the ROC curves for training, testing and validation for neural
network using LOFD classifier, in which it is clear that ROC curve for class 5 moves maximum
towards false positive axis, because of less number of training samples for class 5. Furthermore, for
class 1 and 4 it remains on true positive axis due to more number of samples in the training data.
Figure. 5.17(b) (column 1) shows the performance curve for neural network in which best validation
performance is achieved at epoch 49. The training, testing, and validation accuracy obtained by
the neural network are 88.3%, 81.3% and 85.2%, respectively.

Experimental results with other supervised classifiers using the LOFD feature are shown in
Tab. 5.3. For training the classifiers, as shown in Tab. 5.3, first we divided 1355 samples from
ROBIN(R) dataset in 70% (training) and 30% (testing). Training and testing accuracy are shown
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Figure 5.16 : Training, testing and validation ROC curves for BoD and LOFD features.

in the first and second columns, respectively. We tried testing the sampled from SESYD (denoted
as S) dataset with this trained model. However, the testing accuracy statistics (column 3) are
not up to the mark. Hence, we mixed the samples from both datasets. Taking 500 samples from
SESYD and 1355 samples of ROBIN, making it a collective dataset of 1855 images, other models
were trained and training and testing are shown in column 4 and column 5, respectively. The best
performing classifier is linear Support Vector Machine (SVM), one versus one, for ROBIN dataset
and quadratic SVM (one versus all) for mixed samples making LOFD a highly accurate feature
descriptor for room annotation learning in floor plan images.

Table 5.4 : Performance analysis of text generation algorithm using ROUGE score.

ROUGE Average Recall Average Precision F score
ROUGE-1 0.5061 0.2715 0.3445
ROUGE-2 0.1545 0.5707 0.07616
ROUGE-3 0.0535 0.01093 0.01483

5.5.2 Description synthesis

All the reference corpus available in the A-ROBIN dataset and the generated descriptions
were tokenized using the “Penn Treebank tokenizer’’ Marcus et al. [1993] and utilized during
the evaluation. We have compared the machine-generated description of the floor plan with
human-written descriptions in A-ROBIN. Three metrics evaluate the generated description,
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Figure 5.17 : Performance analysis of multi-layered perceptron by BoD and LOFD.

Table 5.5 : Performance analysis of text generation algorithm using BLEU score.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
0.6418 0.4673 0.3448 0.2103

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) proposed in, Lin [2004], Bilingual
Evaluation Understudy (BLEU) proposed in, Papineni et al. [2002] and Metric for Evaluation
of Translation with Explicit Ordering (METEOR) proposed in, Denkowski and Lavie [2011]. The
textual description generated by our framework is then compared with the descriptions in A-ROBIN
to evaluate their agreement with human-written descriptions. Table 5.4 depicts the average recall,
average precision, and F score for ROUGE-1, ROUGE-2, ROUGE-3. As the value of n in n-gram
comparison increasing, the ROUGE precision score decreases, which is also clear from Tab. 5.4.
Table. 5.5 depicts the BLEU score and Tab. 5.6 METEOR score for the description generated,
which demonstrates a high correlation with human judgment.

ROUGE

ROUGE is a set of metrics designed to evaluate the text summaries. The generated summary
can be evaluated against a set of reference summaries. In our work, we have compared the generated
descriptions with available human written descriptions using n-gram ROUGE by the following
equation.
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Table 5.6 : Performance analysis of description synthesis using METEOR score.

Average Recall Average Precision F1 F mean Final Score
0.555 0.218 0.313 0.450 0.184

∑S∈{RS}∑gram−n∈S Countm(gram−n)

∑S∈{RS}∑gram−n∈S Count(gram−n)
(5.5)

where, RS stands for reference summaries, n stands for the length of the n-gram, gram− n, and
Countm(gram− n) is the maximum number of n-grams co-occurring in the candidate summary
and the set of reference summaries. In Tab. 5.4, comparison with three types of ROUGE-n is
shown, ROUGE-1, ROUGE-2 and ROUGE-3. It can be seen that average recall is decreasing with
increasing n-gram in ROUGE. This behavior is natural as ROUGE-1 compares on the uni-gram
basis in the candidate reference corpus, which is the word matching. ROUGE-2 compares on a
bi-gram basis, taking a set of two words at a time. However, ROUGE-3 compares on a tri-gram
basis, which is by considering 3 words at a time. Since ROUGE-1, ROUGE-2, and ROUGE-3
use uni-gram, bi-gram, and tri-gram comparisons, respectively, the decreasing nature of average
precision is natural. Machine-generated descriptions have a fixed pattern for words to be used and
the information to be displayed. However, human-written descriptions can have any sequence and
use of words and phrases.

BLEU

BLEU metric analyses the co-occurrences of n-grams between a machine translation and a
human-written sentence. The more matches, the better is the candidate translation is. The score
ranges from 0 to 1, where 0 is the worst score, and 1 is the perfect match. In Tab. 5.5, we have
given 4 types of BLEU score, for 4 values of n-gram. They first compute n-gram modified precision
score (pn) by the following equation,

pn =
∑C∈{Cand}∑gram−n∈C Countclip(gram−n)

∑C′∈{Cand}∑gram−n′∈C′Count(gram−n′)
(5.6)

Where, Countclip limits the number of times a n-gram to be considered in a candidate (Cand) string.
Then they computer the geometric mean of the modified precision (pn) using n-gram upto length N
and weights Wn which sums up to 1. A brevity penalty(BP) is used for longer candidate summaries
and for spurious words in it, which is defined by the following equation:

BP =

{
1, if c > r
e

1−r
c , c≤ r

(5.7)

Where c is the length of candidate summary and r is the length of reference summary. Then BLEU
score for corpus level given equal weights to all n-grams is evaluated by the following equation:

BLEU = BP.exp∑N
i=1 Wnlog(pn) (5.8)

Here Wn is the equally distributed weight in n-grams. E.g., in case of BLEU-4, the weights used are
{(0.25),(0.25),(0.25),(0.25)}. The proposed dataset perform well on BLEU score as shown in Tab.
5.5.
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METEOR

METEOR is a metric used for evaluating machine-generated summaries with human written
summaries by checking the goodness of the order of words in both. METEOR score combines
precision, recall and fragmentation (alignment) in the sentences. It is a harmonic mean of the
uni-gram precision and uni-gram recall given an alignment, and calculated as:

PN =
1
2

(
no o f chunks

matched uni−grams

)
(5.9)

MET EOR =
10PR

R+9P
(1−PN) (5.10)

Where PN is the penalty imposed on the basis of larger number of chunks, P is the uni-gram
precision, R is the uni-gram recall and METEOR is the final score obtained by multiplying the
harmonic mean of uni-gram precision and uni-gram recall with the penalty imposed. Table. 5.6
shows the METEOR score we have obtained while experimenting on A-ROBIN dataset. It can be
said that the generated descriptions are very close to the human written descriptions. Also, it is
clear that the descriptions collected in the A-ROBIN dataset are grammatically correct and close
to the descriptions generated by the proximity-based grammar model.

5.6 QUALITATIVE RESULTS

In this section, we describe the qualitative results. These result shows the generated
descriptions for samples from A-ROBIN dataset, along with the navigation information in the
narrative form.

5.6.1 Examples of description synthesis

In SUGAMAN, rooms are labelled into one of the 5 classes using the trained model. Room
annotations and semantic information are stored in an XML file, which is parsed for description
synthesis. Figure 5.18 presents the resultant description for 3 floor plan images. The description
is formatted in the following way for ease of reading, (i) the first word of the first sentence about
any room is in bold face, (ii) in the floor plan image, every room is highlighted with a different
color and the same color is used to highlight the room name in the first sentence about the room,
(iii) in the floor plan image, the turning points are marked with ’T’ and sequence of traversal of
doors are marked with their respective numbers. There are two types of descriptions synthesized
for a given floor plan. The first kind of description is named as General description (GD), which
contains information like name, area, global position in the floor plan, relative position of decors,
and neighboring rooms in terms of its accessibility by a door is described for each room in the
final output description, along with a room having a door opening to outside of the house is also
described. The other one is Navigation description (NV), which contains navigation information
from room to room avoiding obstacles. If a room has only one door, it is a dead end. Hence the
navigating person will turn back.

Figure. 5.18(a),(b),(c) are examples where the descriptions are successfully generated for
the floor plan images. For example, in Fig. 5.18(a), the GD correctly describes the number of
rooms, their connectivity count, and the decors’ arrangements inside each room. On the other
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Figure 5.18 : Generated descriptions for three floor plan images from A-ROBIN dataset.

hand, the NV part of the description guides the user to navigate each room, starting from the
entry. It can be observed that starting from the entry door (labeled as 1), the first obstacle to go
to the kitchen (as per the DFS navigation) is a sofa. Hence, the user has to take a turn (marked
as “T’’) and then proceed. The directional information are obtained from the nonuniform binning
technique discussed in Sec. 5.4.3. In Fig. 5.18(a), also the significance of “backtracking” can be
understood. Once someone reaches the kitchen, then the next room to visit is the bedroom. Since
there is no direct connection (as per Alg. 3, line 6, AMD(cr,nr) ̸= 1). Thus, the current room (cr) is
changed from kitchen to entry. However, the navigation door should now be availed 2, even though
the current room is the entry. The switching of the door index, as per door-to-door connectivity,
is taken care by the line 31-34 of Alg. 3. We have tested Alg. 3 for various configurations and
achieved correct results. Figure. 5.19 shows a failure case. The reason behind this failure is that
the decor recognition framework has miss-classified the large sink as sink and tub as a large sofa.
The NV part of this example is not shown here as the GD is incorrect. As a result, the bathroom
is labeled as the kitchen. The limitations of the proposed framework are discussed next.
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Figure 5.19 : Generated descriptions for three floor plan images from A-ROBIN dataset.

Figure 5.20 : An illustration of incorrect creation of the LOFD feature.

5.6.2 Limitations of proposed BoD and LOFD features

The proposed features highly depend on the decor classification. An inaccurate decor
classification algorithm affects the accuracy of BoD and LOFD features. Figure 5.20 depicts an
incorrect creation of LOFD feature. Due to the morphological operation and joining of the nearby
blob, the twin sink is classified as a large sink. As a result, the classification model confused
this room image and labeled the kitchen as a bathroom. Hence, we require a highly accurate
decor classification algorithm. Reducing its dependency on decor classification or a better decor
classification algorithm will further improve its accuracy. Moreover, the descriptions collected
through Google form at present are scripted. However, there is substantial variability in reality
while describing a floor plan like incomplete sentences, out-of sequence, room description, etc. A
learning model, which can collate all this information and generates a single description to be used
for experiment purposes forms a unique scope for future work.

5.7 COMPARATIVE ANALYSIS

5.7.1 Decor identification

Table 5.7 shows the comparison between existing techniques proposed in D. Sharma, C.
Chattopadhyay and G. Harit [2016]; Hu [1962]; Ojala et al. [2002] and ours. All the decor items in
each room image is classified in one of the 12 decor categories. The maximum accuracy obtained for
a particular symbol is depicted in bold face numbers. Performance between ours and D. Sharma,
C. Chattopadhyay and G. Harit [2016] is comparable, except for the large sink and tub, where
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Table 5.7 : Comparison of recognition accuracy (%) of ours vs. others.

Symbol D. Sharma, C. Chattopadhyay and G. Harit [2016] Hu [1962] Ojala et al. [2002] Ours
Bed 99.01 80.39 44.60 98.5
Arm Chair 100 77.77 63.88 100
Coffee Table 99.15 0.004 11.44 99.57
Dining Table 98.76 77.77 66.66 98.76
Small Sofa 100 96.77 0.00 100
Large Sofa 98.06 0.009 65.44 99.35
Small Sink 83.33 0.00 72.22 88.88
Twin Sink 95.23 0.00 71.42 95.23
Sink 100 0.00 63.73 100
Large Sink 55.69 0.00 51.89 67.08
Tub 61.16 74.75 61.16 97.08
Round table 0.00 0.00 100 82.35

SUGAMAN is superior. The technique proposed in D. Sharma, C. Chattopadhyay and G. Harit
[2016] could not detect the round table, while SUGAMAN achieves 82.35% accuracy. In addition, for
the technique proposed in Hu [1962], recognition accuracy is very low. However, with our technique
implemented using the LBP feature, the round table could be recognized with 100% accuracy,
while comparatively much lower accuracy for others, which lowers down the overall system’s mean
accuracy.

5.7.2 Access navigation

Table 5.8 shows the comparative analysis of the various state-of-the-art indoor navigation
approaches with ours. We have compared the existing approaches with ours in terms of the problems
in navigation they have addressed. In the work Xu et al. [2016], the authors have addressed the
problem of obstacle avoidance same as SUGAMAN. However, proposed work in Liu and Zlatanova
[2011] and Zlatanova et al. [2013] have not dealt with this issue. Moreover, the technique proposed
in Xu et al. [2016] requires creating a network that involves checking all the edges of the triangle
created (Delaunay triangulation), which increases the algorithm’s complexity. Taking the problem
of backtracking of the path when a dead end is encountered, SUGAMAN has dealt with it, while
others don’t provide a solution for the same. Additionally, the proposed work in Xu et al. [2016]
requires an empirical calculation of a threshold value for Delaunay triangulation, which is not
required in others and SUGAMAN as well. The proposed algorithm is better in terms of problems
addressed and complexity. It provides the shortest door to door path for indoor navigation while
avoiding obstacles and without any requirement of manual intervention.

Method
Problem Obstacle

Avoidance Backtracking
Threshold

Calculation
Ours Yes Yes Not Required

Xu et al. [2016] Yes No Required
Liu and Zlatanova

[2011] No No Not Required

Zlatanova et al. [2013] No No Not Required

Table 5.8 : Comparative analysis of various path finding approaches
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5.8 SUMMARY

This chapter’s primary objective is to generate description and navigation information from
floor plan images for the visually impaired. We have proposed novel features, BoD and LOFD,
for automatic room label learning. A proximity-based grammar model is also proposed used to
synthesize the description. The proposed algorithm also generates navigation information in the
form of narration. We have also offered a novel description dataset, A-ROBIN, and made it publicly
available for the DAR community. In the next chapter, two advanced deep learning models,
Description Synthesis from Image Cues (DSIC) and Transformer-Based Description Generation
(TBDG) are proposed for end-to-end textual description generation from floor plan images utilizing
the paragraph annotations proposed in BRIDGE dataset.
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