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Knowledge driven Description Synthesis for Floor Plan

Interpretation

In chapter 4 and 5, the methods for interpreting floor plans in the textual description
are discussed using labelled and unlabelled floor plans. For labelled floor plans, OCR technique
was used to identify the room labels and other textual annotations. While walls and decor
characterization was done by signature-based methods. For unlabelled floor plans, hand-crafted
features were proposed, BoD and LOFD which represented the rooms in a floor plan in the form of
a sparse histogram of decor present in that room. Features for rooms were learnt using an artificial
neural network and the experiment was done with several other classifiers including variants of
SVM. The description was generated using a grammar based method in a multi-staged pipeline.
However, these descriptions are semi-structured which lack flexibility in nature. They are not very
close to human written description and may not contain all required information. Moreover, the
multi-staged pipeline contains several stages of detection and classification and doesn’t learn textual
descriptions in a single shot. To generate a textual description, which is close to the human written
form and does not have a fixed structure, an end-to-end learning pipeline is required which learns
visual features along with the textual features.

There are several challenges regarding describing a graphical document in natural language.
A graphical document is not similar to a natural image that has an essential feature in every
pixel. Additionally, every part of a graphical document has to be analyzed separately to extract
meaningful information out of it. Hence, traditional approaches for encoding image features with
textual features fail in this context. In state of the art approaches for description generation from
floor plan images, classical machine learning methods in a multi-staged manner has been explored.
The accuracy of these generated descriptions highly depends upon the accuracy of different stages
and have a very rigid structure. To overcome the shortcomings of these methods, end-to-end
learning models, Transformer Based Description Generation (TBDG) and Description Synthesis
using Image Cues (DSIC) are proposed which generate a textual description very close to the
human written form. These end-to-end learning models use image cues (DSIC) and image cues
along with word cues (TBDG) to encode the paragraph descriptions available in BRIDGE dataset.
Moreover, to improve the accuracy of multi-staged methods, a deep learning based multi-staged
pipeline is proposed for the detection and classification of visual elements of the floor plan.

Figure 6.1 depicts the proposed problem with the desired output. The generated captions
in Fig. 6.1 (second row from the top) are semi-structured and contain limited information. The
bottom row provides more details on the floor plan and very close to human written descriptions.
In the proposed work, we try to take advantage of both image cues along with the word signals
to generate specific and meaningful descriptions of the floor plan images. The language generation
framework encodes the input description with the paragraphs given in BRIDGE, and generates a
multi-sentence description that is more free styled and has specific information contained by the
floor plan image. The rest of the chapter is organized in the following way. Section 6.1 gives a brief
overview of the proposed models and the uniqueness of the work. Section 6.2 and 6.3 describes the
two proposed models in details. Section 6.4 describes the experimental setup and the evaluation
metrics followed for performance analysis. Section 6.5 discusses the results generated using proposed
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Figure 6.1 : An illustration of the proposed problem domain with the desired output.

models. Section 6.6 describes the comparative analysis of the various stages involved in description
generation models and their qualitative and quantitative comparison, while the chapter is concluded
in Sec. 6.7.

6.1 BRIEF OVERVIEW

A floor plan is a graphical document that aids architects in showing the interior of a building.
Floor plan image analysis involves semantic segmentation, symbol spotting, and identifying a
relationship between them. Describing a floor plan in natural language has applications in robotics,
real-estate business, and automation. However, there are several challenges regarding narrating
a graphical document in natural language. A graphical document is not similar to a natural
photograph that has an essential feature in every pixel. Hence, traditional approaches using image
features with textual description fails in this context. The graphical document requires specific
information for their description to make it more meaningful. Hence, cues taken directly from an
image are not very efficient in this context. There are several approaches available for language
modeling and text generation in which the encoder-decoder framework is the most popular choice.
In image-to-text generation, CNN-RNN (CNN acting as an encoder, RNN as a decoder) is widely
used in literature. The variant of RNN is varied in the decoder as LSTM, Bi-LSTM, and GRU.

Figure 6.1 depicts the proposed problem with the desired output. The generated captions in
Fig. 6.1 (second row from the top) are very structured and contain limited information. The bottom
row provides more realistic descriptions. We take advantage of both image cues and word signals to
generate specific and meaningful descriptions. The proposed work leverages annotations proposed
in the BRIDGE dataset discussed in Chapter 3 by offering multisentence paragraph generation
solutions from floor plan images.

Figure 6.2 depicts the overall flow of our proposed method. We extend the idea of extracting
information from floor plan images in a multistaged pipeline using deep learning methods. This
direction’s previous work is extended by offering models that learn textual features with visual
features in an end-to-end framework. We propose two models, Description Synthesis from Image
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Figure 6.2 : An illustration of the proposed work of generating textual description from floor plan
images.

Cue (DSIC) and Transformer Based Description Generation (TBDG), where TBDG is more robust
than DSIC. These two proposed models differ in the way the decoder receives the input. In
DSIC, region-wise visual features are learned with textual features, and a paragraph description is
generated. In contrast, TBDG learns region-wise captions with region wise features, and those text
features are given as input to the decoder model to create a paragraph. We further propose a deep
learning based multistaged pipeline for description generation in order to prove the superiority of
end-to-end learning models on multistaged pipelines.

Uniqueness of the proposed work: In the previous work, Goyal et al. [2018a, 2019a,
2018b], only visual elements are learned and classified in a multi-staged manner using classical
machine learning approaches. Tasks such as semantic segmentation, room classification, and decor
classification are performed in a sequential pipeline using classical machine learning methods. In
Goyal et al. [2019b], the similar visual elements are learned and classified in part-by-part manner
using a deep neural network. In contrast with the existing approaches, in this work, the visual
information from floor plan images and textual features are learned together in an end to end deep
learning framework, and a holistic description for the same is generated.

6.2 DESCRIPTION SYNTHESIS FROM IMAGE CUE (DSIC)

We have described the floor plan images in the proposed model by extracting region-wise
visual features from images and learning paragraphs by providing them to a decoder network. The
region proposal network (RPN) acts as the encoder, and a hierarchical RNN structure acts as the
decoder. The system is trained in an end to end manner. We describe each step in detail next.

6.2.1 Visual feature extraction

We adopt a hierarchical RNN based approach as a decoder framework. Figure 6.3 depicts a
typical architecture of the proposed model. The dataset contains the image (I) and its corresponding
paragraph description (K) in the proposed approach. The CNN is used along with a RPN to generate
region proposals, R1,R2, ...,Rn. We extracted the top 5 region proposals for this approach and pooled
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Figure 6.3 : Hierarchical RNN to yield paragraph from floor plans.

them in a single pooling vector P using a projection matrix. In DSIC, two RNNs are used in a
hierarchy, where one is used for learning sentence topic vectors from pooled features, and the other
is used for learning words for the respective sentence topic vectors. In DSIC, the top 5 regions are
extracted because there are average 5 sentences per paragraph in Goyal et al. [2019b].

6.2.2 Region Pooling:

All the extracted regions Ri are pooled in a vector P by taking the projection of each region
vector Ri with a projection matrix M and taking an element wise maximum. Dimension of the pooled
vector is same as the region vectors and defined as P = maxn

i=1 (MRi +bias) The projection matrix
is trained end-to-end on the sentence RNN and the word RNN. The pooled vector P, compactly
represents all the regions Ris.

6.2.3 Hierarchical RNN structure:

This network, as shown in Fig. 6.3, contains two units of the RNN network. One is
sentence level (S-RNN) and the other is word-level (W-RNN). The S-RNN is single-layered, used
for generating a sentence topic vector for each sentence, and decides the number of sentences to be
generated. W-RNN is a two-layered and takes the sentence topic vectors as input and generates
words in each sentence. Instead of using one single RNN as a decoder, which would have to regress
over a long sequence of words and make training the language model harder, two RNN networks are
taken in a hierarchy. The choice of networks for both RNNs is kept as LSTM networks since they
can learn long-term dependencies than a vanilla RNN. The S-RNN is followed by 2 layered fully
connected network, which generates a topic vector to be given as input to W-RNN after processing
the hidden states from RNN. The W-RNN takes topic vector and word level embeddings for the
respective sentence as input. A probability distribution is generated for each word in the vocabulary,
where is the threshold, T h is taken as 0.5, which generates further words for each sentence.

6.2.4 Training:

At this stage, the pooled vectors Pi generated from region proposals are taken as input to
the sentence level RNN for each image I and respective paragraph K. Each input maximum of 5
sentences and 60 words are generated (empirically identified based upon validation performance).
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Figure 6.4 : Framework of the proposed TBDG model of generating paragraph description from input
floor plan image.

Hence, at each stage, Sentmax = 5 copies of word RNN and topic vector is generated by the sentence
RNN for each word RNN for, Wordmax=60 timestamps.

loss(I,K) = βsent ∗
Sentmax

∑
i=1

losssent(Probi,Ki)+βword ∗
Sentmax

∑
i=1

Wordmax

∑
j=1

lossword(Probi j,Ki j) (6.1)

Equation 6.1 is the loss function which is the weighted sum of cross-entropy losses, losssent

and lossword , where losssent is the loss over probability over a sentence topic is generation (Probi) and
lossword is the loss over probability over words generation (Probi j), with each respective sentence
topic where K is the paragraph description for each image I. The training parameters for DSIC
model are such that: Sentence LSTM has 512 units, word LSTM has 512 units, Fully connected
layer is size 1024. Next, we describe an alternative to DSIC model, TBDG model where the decoder
unit takes text cues instead of image features/cues as input.

6.3 TRANSFORMER BASED DESCRIPTION GENERATION (TBDG)

The TBDG is a transformer-based model for generating descriptions from floor plan images.
It takes input as text features by its decoder unit and generates a paragraph-based description. In
TBDG, RPN learns region-wise captions available in BRIDGE dataset, instead of multi-sentenced
paragraphs, which makes it different from DSIC model. In addition, a Bi-LSTM unit acts as an
encoder to the LSTM unit acting as a decoder.

6.3.1 Paragraph generation with extra knowledge

Descriptions generated directly from image cues in DSIC lack the floor plan-specific information.
There are chances to miss out on salient features in the graphical document. Additional knowledge
is required to generate more flexible and exciting descriptions and accurate data specific to the input
image. Hence, the data available is the tuple of (I,We,K), where I is the input floor plan image,
We is the word cues extracted from the image, and K is the paragraph description about each
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floor plan. In language modeling and text generation networks, Seq2Seq models are widely used.
However, with the advent of attention based seq2seq networks, popularly known as transformers,
the performance of the text generation models has been increased to a great extent. In TBDG, the
corpus K is pre-processed for training by removing extra lines, white spaces, unknown symbols and
punctuation, and tokenized using PTB tokenizer Marcus et al. [1993]. The words which are most
frequently occurring are selected, and a vocabulary is generated for the words.

6.3.2 Region wise caption

Floor plan images are distinctly different from natural images, and conventional deep models
are inefficient to create features depicting a unique floor plan. Hence, learning region-wise visual
features is advantageous in this context. We have extracted the region using the region proposal
model described in DSIC. The annotations for regions in floor plans, available in Goyal et al.
[2019b], are used along with these region proposals to train an LSTM model. The model generates
region-wise descriptions/captions, C1,C2, ...,Cn as shown in Fig. 6.4. The generated captions are
taken as input to the encoder-decoder unit, which is the next stage of the pipeline, where these
captions serve as extra knowledge to the decoder network.

6.3.3 Caption fusion and word embedding generation

At this stage, we have n captions generated for each floor plan image. We select the top
5 captions with the highest probability and fuse them as a paragraph. C1 ◦C2 ◦C3 ◦C4 ◦C5 = Wi,
where Wi is the fused one dimensional vector of the extracted captions and i is the number of
training samples. Wi is the concatenation of word embeddings created by word2vec and |We| =
min(|W1|, |W2|, |W3|, ..., |Wi|). Word2vec generates the embeddings for words, which is a representation
of each word as a vector. The dimension of the concatenated vector was taken as the minimum of
the vectors to avoid the vanishing gradient problem during the back propagation of the network.

6.3.4 Paragraph encoding

In Goyal et al. [2019b], for each floor plan, a detailed paragraph description is available.
However, some of the paragraphs are too long for encoding and contain additional information.
Training the model with too long sequences leads to the vanishing gradient problem. Considering
the dataset’s size, manually selecting useful information from each set of sentences is impossible.
Hence, we heuristically selected a few keywords from the corpus. Examples of such keywords are
common categories of regions like bedroom, bathroom, kitchen, porch, garage, and other keywords
describing objects, like stairs, bathtubs, kitchen bars. From the available paragraphs, we extracted
only those sentences which consist of these keywords to shorten the length of each paragraph.
Each target sequence (Ti) is a 1-D vector and concatenation of the word embeddings generated by
word2vec, and, |Te|= min(|T1|, |T2|, |T3|, ..., |Ti|) as shown in Fig. 6.4.

6.3.5 Encoder-Decoder architecture

In TBDG model, we have proposed a transformer architecture that can handle dependencies
between input and output sequence tokens by giving the decoder the entire input sequence. It
focuses on a certain part of the input sequence when it predicts the output sequence. As shown
in Fig. 6.4, the encoded captions We are given as input to the Bi-LSTM unit which acts as an
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encoder. The Bi-LSTM unit generates hidden states (h1,h2,h3, ...,hn) and given to an attention
mechanism which first generates alignment scores ei j between the current target hidden state ht and
source hidden state hs. The alignment scores are further given to SoftMax layer, which generates
normalized output probabilities for each word as αi j, (See. Eq. 6.3). Here, ei j are the outputs
generated by the alignment model, where i is the number of time step. Attention weight αi j is
the normalized attention score at each time stamp i for jth hidden state, where n is the number of
encoded words in the sentence or hidden states. Further context vector cvi is generated at every
time step i, which is a weighted sum of encoded feature vectors. Context vector is defined as:

cvi =
n

∑
j=1

(αi jhi) (6.2)

Attention scores learn how relevant is the input vector to the output vector. In the Fig. 6.4
the word embeddings, We and Te are given as input and target output vectors to the encoder unit.
Equation 6.3 describes the calculation of attention scores in the proposed model.

ei j = align(ht ,hs) (6.3)

αi j =
exp(ei j)

∑exp(ein)

Hence, this way the decoder learns correspondence between input and output sequences
in a global context and generates output sentences Se. Here, the decoder is a LSTM network
with 256 units, connected to a Time-Distributed dense layer with SoftMax activation function.
Time-Distributed dense layer applies a fully connected (dense) operation on every time step. The
network parameters used for training TBDS model are such that: Optimizer used is Adam, Loss
function is Categorical Cross Entropy, Input sequence length is 80, output sequence length is kept
80, embedding dimensions is 150 (empirically determined).

6.4 EXPERIMENTAL SETUP

Here we discuss the details of how the experiments were conducted. All the experiments
were performed on the dataset BRIDGE on a system with NVIDIA GPU Quadro P6000, with 24
GB GPU memory, 256 GB RAM. All implementation has been done in Keras with Python.

6.4.1 Dataset

In this work, we have conducted our experiments on BRIDGE Goyal et al. [2019b]. This
dataset has a large number of floor plan samples and their corresponding metadata. Figure.
6.5 shows the components of Goyal et al. [2019b] which has (a) floor plan image, (b) decor
symbol annotation in an XML format, (c) region-wise caption annotations in JSON format, (d)
paragraph-based descriptions. Each paragraph’s average length in word count is 116, with the
average length of each sentence being 5. The count of diversity is 121, a measure of the richness of
words used in sentences. There are 134942 nouns, 5027 verbs, 46379 adjectives, and 5476 proper
nouns available in the dataset.
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Figure 6.5 : An illustration of a floor plan image and its corresponding annotations in the BRIDGE
dataset Goyal et al. [2019b].

6.4.2 Quantitative Evaluation Metrics

We have quantitatively evaluated the symbol spotting accuracy and text synthesis quality.
The performance metrics are defined next.

ROUGE

It is a set of metrics designed to evaluate the text summaries with a collection of reference
summaries. We have compared the generated descriptions with available human-written descriptions
using n-gram ROUGE based on the formula

∑S∈{RS}∑gram−n∈S Countm(gram−n)

∑S∈{RS}∑gram−n∈S Count(gram−n)
(6.4)

where RS stands for reference summaries, n stands for length of the n-gram, gram−n, and Countm(gram−
n) is the maximum number of n-grams co-occurring in the candidate summary and the set of
reference summaries.

BLEU

It analyses the co-occurrences of n-grams between a machine translation and a human-written
sentence. The more the matches, the better is the candidate translation is. The score ranges from
0 to 1, where 0 is the worst score, and 1 is the perfect match. The n-gram modified precision score
(pn) is computed as:

pn =
∑C∈{Cand}∑gram−n∈C Countclip(gram−n)

∑C′∈{Cand}∑gram−n′∈C′Count(gram−n′)
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Countclip limits the number of times an n-gram to be considered in a candidate (Cand) string. Then
they computer the geometric mean of the modified precision (pn) using n-gram up to length N and
weight Wn, which sums up to 1. A brevity penalty (BP) is used for longer candidate summaries and
for spurious words in it, which is defined by the following equation:

BP =

{
1, if c > r
e

1−r
c , c≤ r

(6.5)

c is the length of the candidate summary, and r is the length of the reference summary. Then BLEU
score for corpus level given equal weights to all n-grams is evaluated by the following equation:

BLEU = BP.exp∑N
i=1 Wnlog(pn) (6.6)

Here Wn is the equally distributed weight in n-grams. E.g., in case of BLEU-4, the weights used are
{(0.25),(0.25),(0.25),(0.25)}.

METEOR

It is a metric used for evaluating machine-generated summaries against human-written
summaries by checking the goodness of the order of words in both. METEOR score combines
precision, recall, and fragmentation (alignment) in the sentences. It is a harmonic mean of the
uni-gram precision and uni-gram recall given alignment and calculated as:

PN =
1
2

(
no o f chunks

matched uni−grams

)
(6.7)

MET EOR =
10PR

R+9P
(1−PN) (6.8)

PN is the penalty imposed based on a larger number of chunks, P are the uni-gram precision, R
is the uni-gram recall. METEOR is the final score obtained by multiplying the harmonic mean of
unigram precision and uni-gram recall with the penalty imposed.

Average Precision (AP)

The metric average precision, used for evaluating the performance of decor symbol detection
method, is defined by the following equation:

AP =
1
Ns
∗∑Pr(rec) (6.9)

Where, Ns is the total detection for each class of symbol, Pr is the precision value as a function of
recall(rec). Mean average precision (mAP) is the average of AP calculated over all the classes.

6.5 RESULTS OF THE PROPOSED MODELS

In the next sections, results generated with the proposed models are described in detail.
To validate the superiority of the proposed models DSIC and TBDG, the description generation
by a multi-staged pipeline with deep learning is also proposed and a comparative analysis is done
to validate the choice of the networks used. In the next sections, steps involved in visual element
detection are described in detail. It also discusses the resultant detection and classification of visual
elements in the proposed pipeline.
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Figure 6.6 : The object classes available in BRIDGE dataset proposed in Goyal et al. [2019c].

6.5.1 Decor symbol detection and classification

Symbol spotting is a widespread problem in document image interpretation. In Goyal et al.
[2019b], there are annotations for the decor symbols. In this work, we have adapted the YOLO
model Redmon and Farhadi [2017] for detecting and classifying the decors by fine-tuning it using
the decor symbol annotations present in the BRIDGE dataset. The symbol spotting network has
9 convolutional layers with max pool layers in between and is fine-tuned for 16 object categories
(as shown in Fig. 6.6). The trained network has 105 filters (for BRIDGE dataset) and a linear
activation function. The predicted class confidence score is calculated as Prob(ob ject)× IoU . Here,
IoU is the intersection of union between the predicted bounding box and the ground truth bounding
box. It is calculated as

IoU =
Area o f Intersection

Area o f Union
(6.10)

At the same time, Prob(ob ject) is the probability of detecting the object in that bounding
box. The decor symbols detected here, (oi), are used in generating semi-structured descriptions in
the later stage. The decor symbols in floor plans can vary widely because of the representation
across different datasets. Also, in the real world floor plans made by architects, the model might
differ. We introduced variability by including samples of floor plans from different datasets such as
Delalandre et al. [2010]; de las Heras et al. [2015]; Sharma et al. [2017] for decor symbol annotations.
The training dataset covers a wide range of decor symbols, making the network detect and recognize
the symbols’ variability. The detected decor symbols in floor plan images are shown in Fig. 6.7.
The two images are taken from BRIDGE datasets and show the variability in decor symbols for two
different floor plan images. Wide variability in decor symbols is included in the training dataset
to make the detection model more general. The symbols which are not detected, for example,
“billiard” and “cooking range”, are not included in the symbol annotations.

6.5.2 Room characterization

Room characterization is a step to recognize and classify individual rooms in a floor plan
to their respective class. In this regard, rooms in each floor plan are classified into 5 classes,
Bedroom, Bathroom, Kitchen, Hall, Living room. Annotations for each room class are taken from
BRIDGE dataset, where region bounding boxes are available and class names are taken from the
region-wise captions for the respective bounding box. A deep learning image classification model
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Figure 6.7 : Qualitative result of the spotted decor symbols in two floor plan images.

using VGG19 as a backbone network is used as a classification framework. Figure 6.8 depicts
the framework diagram of the model and visualization of the network output for a class image
“Bedroom”. In this network, only the last 5 layers are kept trainable in VGG19 and appended with
two dense and dropout (0.5) layers. Figure 6.8 depicts that the activations for the initial layers
retain almost the entire information from the image, focusing on specific parts such as edges and
the image’s background. However, in the deeper layers, activations are less visually interpretable.
The characterized rooms(r) from an input floor plan image are stored as (r1,r2, ...,rn). Figure. 6.9
shows the resultant classification for floor plan image room classification framework into 5 defined
classes. The empty spaces in the floor plan are not marked as any room class in the BRIDGE
dataset, hence they are not classified by the model. VGG19 pretrained on ImageNet dataset is
fine-tuned with a 1920 training sample of 5 room classes, and validation is done over 460 samples.
The training data contains a mixed sample of room images from Goyal et al. [2019b]; de las Heras
et al. [2015]; Sharma et al. [2017]. The rooms ri, generated here are used in generating multi-staged
descriptions in the later stage. The number of samples for each class in the training and validation
dataset are: Bedroom: 440 and 86, Bathroom: 887 and 223, Kitchen: 287 and 72, Hall: 75 and 21,
Living Room: 231 and 58 in the respective order.

6.5.3 Description generation

In the previous sections, different visual elements from the floor plan are detected and
classified using various deep learning models. In the multistaged pipeline, these visual elements are
used for a semi-structured sentence model proposed in Goyal et al. [2018a], Goyal et al. [2019a],
and a description for the given floor plan is generated. Figure 6.10 depicts an example where
the synthesized descriptions for a given floor plan image with the visual elements described in
the previous steps. Figure 6.11 shows the results generated by the proposed models, TBDG,
DSIC, semi-structured sentence-based model, and other baseline models. In the proposed work,
a comparison of semi-structured sentences with learned sentences is presented to demonstrate the
superiority of end-to-end learning models with multi-staged pipelines. Multi-staged pipeline for floor
plan recognition and description generation is presented here as a comparison with the end-to-end
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Figure 6.8 : A visualization of the image classification network with top-6 activation maps from each
layers.

models, DSIC and TBDG. Multi-staged pipelines have been used in the literature for floor plan
recognition and description generation in Goyal et al. [2018a, 2019a, 2018b]; Madugalla et al. [2020].
In multistage pipelines, the accuracy of the generated descriptions depends upon the accuracy of
the intermediate stages. Hence, miss-classification of one component will lead to error in the output
sentence. This rationale is the driving factor to come up with an end-to end learning model with
advanced deep neural networks. In the next sections, comparative analysis for various modules
and sub-modules are discussed in detail, along with the qualitative and quantitative evaluation of
generated descriptions.

6.6 COMPARATIVE ANALYSIS WITH STATE-OF-THE ART

In this section, a qualitative and quantitative comparative analysis with various state-of-the-art
schemes are presented based on the metrics discussed in Sec. 6.4.2.

6.6.1 Comparative analysis of multi-staged pipeline

In this sub-section, we present how the various stages of multi-staged pipeline performed as
the performance evolution of various stages. We also performed a quantitative comparison of the
various steps involved in multi-staged pipelines to validate the choice of network.

Decor Identification:

Figure 6.12 depicts a comparative analysis of YOLO and F-RCNN models trained on
BRIDGE dataset. The mAP obtained for decor symbol spotting network using YOLO is 82.06%
and for F-RCNN is 75.25%. For a few categories of symbols, F-RCNN is performing better, but the
overall mAP is ∼ 7% higher for YOLO. Hence, YOLO is used in the model instead of Faster-RCNN
given the better performance. Furthermore in the work Rezvanifar et al. [2020], symbol spotting
from architectural images is done for occluded and cluttered plans using YOLO, concluding the
fact that YOLO as a single shot detector performs better than two-stage classification networks
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Figure 6.9 : Qualitative result of room classification for 5 classes on two different floor plan images.

such as Faster-RCNN for architectural drawings.

Room Characterization:

Figure. 6.13 (a),(b) depicts the performance of image cues/ visual elements extraction from
floor plan images for room classification. Figure. 6.13(a) is the training and validation accuracy
and loss curves for the room image classification using VGG19 backbone network. After training for
50 epochs, an accuracy of 82.98% could be achieved in-room image classification. The fluctuation
of validation loss is due to the uneven distribution of the number of images in all 5 classes. A 5-fold
cross-validation over the data samples was performed on training data to validate the model.

The room image classification model discussed in Sec. 6.5.2, was also implemented using a
much recent Capsule network Sabour et al. [2017] as a backbone network, which gave a classification
accuracy of 56.01%, making VGG19 the obvious choice for the backbone network. Figure. 6.13(b)
is the training and validation accuracy for the room classification model using Capsule network.
The performance of the room characterization on BRIDGE dataset was also tested with classical
machine learning methods proposed in Goyal et al. [2019a, 2018a]. BoD classifier with multi-layered
perceptron, proposed in Goyal et al. [2018a], gave a validation accuracy of 61.30% and LOFD
proposed in Goyal et al. [2019a] with multi-layered perceptron gave 63.75% of accuracy, while the
validation accuracy of the proposed model is 82.98%, making VGG19 a suitable choice for room
classification model. In Fig. 6.9, the two images have variability in the representation of each room
class, however, the features leared using CNNs are much robust in the case of variable representation
of images of the same class compared to hand-crafted features, leading to higher validation accuracy.
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Figure 6.10 : An illustration of semi-structured description generation from floor plan images.

Figure 6.11 : Descriptions generated with proposed models and various baseline models.

6.6.2 Quantitative evaluation of description generation

In this sub-section we present the quantitative evaluation of our proposed model with other
state-of-the-art. The baseline descriptions are generated using language modelling where models
such as LSTM Hochreiter and Schmidhuber [1997], Bi-LSTM Hochreiter and Schmidhuber [1997]
and GRU Cho et al. [2014] are experimented with. Language modeling is done by learning an entire
corpus. These paragraph corpus are the textual descriptions for floor plans Goyal et al. [2019b].
The generated descriptions from the proposed models and presented baselines are compared on
various matrices defined in Sec. 6.4.2 and the quantitative results are presented in the Tab. 6.1.

Figure. 6.14(a) shows the loss curve for TBDG for the part of language learning (Sequence-to-Sequence
training, LSTM as encoder, Bi-LSTM as decoder), Figure. 6.14(b) shows the loss curve for DSIC for
the language learning part (CNN as encoder, hierarchical RNN as decoder). In TBDG, since LSTM
and Bi-LSTM layers are used for training on word features, in the network, the loss converged below

90



Figure 6.12 : A comparison of YOLO and Faster-RCNN models for decor identification.

1 and became stable in 51 epochs. In DSIC, training LSTM based hierarchical RNN with image
features took a longer epoch time to converge than TBDG because of the larger number of trainable
parameters.

Figure 6.15(a), (b), (c) shows the loss curves for the baseline language models for language
modelling, i.e., LSTM, Bi-LSTM and GRU models respectively. As it can be seen that the loss
value reached below 1 but did not become 0 while training for 20 epochs. Additionally, GRU has
similar benefits, but they are more efficient than LSTMs when training with more data is required.
In this case, LSTM and Bi-LSTM took ∼ 550 ms/epoch, while GRU took ∼ 300 ms/epoch. The
loss value in GRU got stabilized earlier than LSTMs while trained for 50 epochs.

Table 6.1 shows the quantitative comparison of the description synthesis with the proposed
models and the presented baseline models for various metrics with the ground truth paragraphs
available in Goyal et al. [2019b] where the values in bold, represents the highest value of a particular
metric for a given model. The evaluation is done on BLEU-{1,2,3,4}, ROUGEL, and METEOR,
where the BLEU score variant depends upon the n-gram. It can be seen that the performance
of TBDG is better than all other description generation schemes on all the metrics except for
BLEU-3,4. It is least in Semi-Structured template-based method, and Densecap-concatenated
paragraphs (taking top 5 sentences from Densecap model trained on floor plans) since the sentences
have a fixed structure given different input images. However, the performance increases for the
language models, LSTM, Bi-LSTM, and GRU even if they do not generate image-specific sentences.
These language models generate phrases and context used in the training corpus while generating
sentences when we use a seed sentence to create a paragraph, which increases the BLEU scores for
different n-grams. ROUGEL also gives the highest precision, recall and f-score values for the TBDG
model. Hence, it can be concluded that the knowledge-driven description generation (TBDG)
performs better than generating descriptions directly from image cues (visual features). Other
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Figure 6.13 : Performance evaluation of room classification.

Table 6.1 : Evaluation of generated paragraphs with different metrices (METEOR, BLEU, ROUGE).

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGEL
precision recall f-score

Densecap-concat 0.1353 0.0586 0.0955 0.2373 0.0530 0.9416 0.3322 0.4910
Semi-Structured 0.1519 0.1613 0.1622 0.432 0.0677 0.9215 0.3410 0.4977

DSIC 0.7013 0.6794 0.6637 0.6543 0.4460 1.4797 1.0593 1.2346
LSTM 0.4464 0.3048 0.2166 0.1673 0.2076 0.7648 0.6063 0.6763

Bi-LSTM 0.4629 0.3058 0.2275 0.1699 0.2281 0.6852 0.6880 0.6865
GRU 0.4487 0.3019 0.2194 0.1691 0.1825 0.6261 0.6892 0.6561

TBDG 0.7277 0.6866 0.6633 0.6326 0.4927 1.5283 1.1142 1.2867

language models generate sentences using corpus phrases but not specific to the input image, which
is not very useful in the current scenario. The qualitative evaluation and comparison of the proposed
models with the baseline models are discussed next.
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Figure 6.14 : Performance evaluation for TBDG & DSIC models.

Figure 6.15 : A comparison of the loss curves of language models.

Figure 6.17 : An illustration of a failure case with the TBDG model.
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Figure 6.16 : Descriptions generated with proposed models and various baseline models.

Figure 6.18 : An illustration depicting the robustness of the TBDG model over DSIC for an unknown
sample.
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6.6.3 Qualitative evaluation of description generation

All the paragraph descriptions generated by various techniques are shown in Fig. 6.16,
which are corresponding to the images shown in the respective sets of descriptions. Results show
that paragraphs generated by Goyal et al. [2019a] and Johnson et al. [2016] are simple and have
a fixed structure and they do not have flexibility. They do not describe the connection of a room
with another in a global context. However, paragraphs generated from DSIC and TBDG are very
descriptive and close to human written sentences. They also include specific details of the images,
for example, details about the contents of a bedroom, such as closets and bathrooms, details about
the staircase in a hall. They also include details about other areas in the floor plan, for example,
porches and garage, which multi-staged based methods fail to describe because they do not have
these room classes included in their training data. These models themselves capture intricate details
in the descriptions, in which multi-staged based methods fail, since they require explicit annotation
for every component. Moreover, paragraphs generated from other baselines, LSTM, Bi-LSTM,
GRU language models, are generating phrases and words related to the language structure but
possess very less relevance to the input image. Hence, these kinds of models are suitable for poetry,
story, and abstract generation but not for image to paragraph generation.

Figure. 6.17 shows the failed prediction of paragraph for the proposed model TBDG.
Sometimes the model fails to generate longer sequences or the words which are less frequent in
the vocabulary, and then it starts repeating the sentences. Figure. 6.18 shows the failure case
specific to DSIC and the requirement of the TBDG model for the input floor plan image. However,
DSIC yielded descriptions with details related to the plan but not relevant to the current image.
Hence, with TBDG, the generated sentences describe the details of bedrooms and bathrooms, taking
cues from the words. Hence, it validates the robustness of the TBDG model over DSIC for a general
floor plan image.

6.7 SUMMARY

In this work, we proposed two models, DSIC and TBDG for generating textual descriptions
for floor plan images, which are graphical documents depicting a blueprint of a building. However,
being a 2D line drawing images with binary pixel values makes them different from natural images.
Hence, due to the lack of information at every pixel, various state of the art description generation
methods for natural images do not perform well for floor plan images. Therefore, we proposed a
transformer-based image to paragraph generation scheme (TBDG), which takes both image and
word cues to create a paragraph. We also proposed a hierarchical recurrent neural network-based
model (DSIC) to generate descriptions by directly learning features from the image, which lacks
robustness in the case of a general floor plan image. We evaluated the proposed model on different
metrics by presenting several baselines language models for description generation and proposing
a deep learning based multistaged pipeline to generate descriptions from floor plan images. We
trained and tested the proposed models and baselines on the BRIDGE dataset, which contains
large scale floor plan images and annotations for various tasks. In future work, these models will be
made more generalized to generate descriptions for widely variable floor plan images by improving
the network architecture and redesigning the method of taking word cues. In the next chapter, a
RGB indoor scene image based framework is discussed, which takes advantage of RGB images and
SLAM based library for generating a floor plan for indoor scene understanding and interpretation.

95


