Contents

Conte List of List of List of	owledgements	page i iii v vii viii xiii xvi
Chap 1.1 1.2 1.3 1.4	Iter 1: Introduction Background Research Motiovation Research Objective and and Contributions Thesis Layout	1 1 2 4 5
2.1 2.2	The History of LBM Collision Models of LBM LBM in Turbulence Modeling 2.3.1 Study of Turbulent Flow Simulation over Bluff body 2.3.2 Study of Stirred Tank Reactor Simulation Issue and Challenges Summary	7 7 8 8 8 9 11 13
Chap 3.1 3.2 3.3 3.4	Ster 3: Methodology Simulation Procedure 3.1.1 Single-Relaxation-Time (SRT) model 3.1.2 LES Turbulent Model in LBM Boundary Conditions 3.2.1 On-site Velocity Boundary Condition 3.2.2 Bounce-Back Boundary Conditions 3.2.2.1 Full way bounce-back 3.2.2.2 Half way bounce-back 3.2.2.3 Modified bounce-back 3.2.2.3 Free-Slip Boundary Condition 3.2.4 Immersed Boundary Method GPU Programming 3.3.1 Architecture Details of NVIDIA Tesla GP100 GPU 3.3.2 Structure of CUDA Programming 3.3.3 LBM implementation on GPU cluster Summary	15 15 17 19 28 29 30 30 30 30 32 33 35 35
Chap 4.1 4.2 4.3	Iter 4: Turbulent Flow Simulation over a Bluff Body Simulation Domain and Flow Conditions Results and Discussion 4.2.1 Effect of Discrete Velocity Models of LBM 4.2.2 Effect of Boundary Conditions Summary	37 37 38 38 43 43
Chap 5.1 5.2 5.3 5.4 5.5	 ter 5: Effect of Baffles on the Flow Hydrodynamics of Dual-Rushton Turbine Stirred Tank Bioreactor Flow System Simulation Methodology Aspects of Numerical Setup Results and Discussion 5.4.1 Instantaneous Flow Field 5.4.2 Phase-Averaged Flow Field 5.4.3 Turbulent Kinetic Energy Summary 	49 49 50 51 51 51 52 58 60

6.1	ter 6: Conclusions and Future Recommendations Conclusions 6.1.1 Effect of Discrete Velocity Models 6.1.2 Effect of boundary conditions 6.1.3 Effect of baffles on flow hydrodynamics of stirred tank reactor Recommendations for Future Works	61 61 61 62 62
References		65
A1 A2	endix A: Knowledge Dissemination International Journal Book Chapter Conference Proceedings Solver Development	71 71 71 71 71 71
Appendix B: Grid Independence StudyB1Turbulent Flow over Bluff BodyB2Fluid Flow Simulation in Stirred Tank Reactor		73 73 73