
4
Turbulent Flow Simulation over a Bluff Body

In this chapter, a set of numerical simulations using LBM are presented to test and compare
the of different velocity distributionmodels of LBMand boundary conditions on the turbulent flow
pattern. Hence, two studies have been performed on the benchmark case of turbulent flow past
over a bluff body. First, how the different discrete velocitymodels of LBM affect the turbulent flow
behavior past over a bluff body is explored. Second, the changes observed on the flow pattern on
implementing different boundary conditions on the bluff body to achieve a no-slip condition are
demonstrated.

The present work aims to address the aforementioned problems. A detailed discussion on
the simulationmethodology is presented in the next section. Our key contributions for this chapter
are:

• Investigation of the efficiency of various 3-D discrete velocity models of LBM for the
simulation of turbulent flow past over a bluff body.

• Comparison of two different boundary conditions for benchmark problem of turbulent flow
simulation past a square cylinder.

• Implementation of the LBM algorithm on the GPU parallel environment using CUDA
programming model.

In this chapter, the first problem is addressed by assessing the comparison of the discrete
velocity models (D3Q15, D3Q19, and D3Q27) of the LBM for the simulation of turbulent flow over
a bluff body. The second study reports the comparison of the modified bounce-back (BB) method
and immersed boundary (IB)method for the treatment of no-slip boundary conditions for the same
benchmark case of turbulent flow simulation over a bluff body.

The remainder of the chapter is organized as follows: Section 4.1 provides a comprehensive
overview of the simulation geometry and the flow conditions used in the present thesis work. The
numerical results are presented in Section 4.2. Section 4.3 summarizes and highlighting the key
points of the chapter.

4.1 SIMULATION DOMAIN AND FLOW CONDITIONS
In this section, the geometry of the simulation domain and other flow conditions to study

the turbulent flow over a bluff body using LBM are illustrated. Figure 4.1 shows the schematic
representation of the flow domain. It consists of a square cylinder (diameter, d = 10 mm) confined
in a rectangular duct. The cylinder has complete spans in the duct. The flow is described in
the Cartesian coordinate system, where the x-axis is the streamwise dimension, the y-axis is the
cross-stream dimension, and the z-axis is the spanwise dimension. In this work, the streamwise,
cross-stream, and spanwise dimensions are 20d, 5d, and 3d, respectively. The inflow condition has
a mean velocity ofUm, with a thin boundary layer (6% of channel height, H). Random fluctuations
are added to the mean velocity for inflow turbulence seeding. The random fluctuations are 6%
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ofUm in RMS magnitude. The Reynolds number, defined as Red =Umd/ν (where ν is the physical
kinematic viscosity of the working fluid (i.e. water), is 3000 and the blockage ratio d/H is 20%. The
cylinder is placed at the center of the duct and a distance of 0.6H from the inlet. A similar flow
configuration experimentally studied by Nakagawa et al. [1999] for the channel flow. Later, Kim
et al. [2004] numerically studied the particular flow configuration using a finite volume approach
based on LES.

Figure 4.1 : Schematic representation of the flow domain.

In this study, the LES method is used to model the turbulent flow. The Smagorinsky SGS
scheme has been used for subgrid-closure with a Smagorinsky constant (Cs) of 0.2 [Koda and Lien,
2015]. The uniform computational grid has 800×200×120 nodes in the streamwise, cross-stream,
and spanwise direction, respectively [Koda and Lien, 2015]. Simulations have run for a total of
1 million time-steps, and the turbulent statistics have averaged after every 1000 time-steps. The
no-slip boundary conditions have been implemented on the walls of the rectangular duct and
cylinder walls using a full way bounce-back rule [Agarwal and Prakash, 2018]. For the inlet,
“on-site” velocity boundary conditions have been used, and at the outlet, constant pressure is
applied [Agarwal, 2020; Hecht and Harting, 2010; Zou and He, 1997]. A detailed explanation for
the boundary conditions is presented in Section 3.2.

4.2 RESULTS AND DISCUSSION
4.2.1 Effect of Discrete Velocity Models of LBM

In this subsection, the results of the effect of 3-D discrete velocity models of LBM (D3Q15,
D3Q19, and D3Q27) on the turbulent flow over a bluff body are discussed. The details about the
models are presented in Section 3.1. Figure 4.2 shows the instantaneous streamwise velocity
component at a spanwise cross-section for all the discrete velocity models used in this study. The
formation of vortices at the downstream face of the cylinder and the location of turbulent wakes
can be visualized. The visualization plot shows that the diffusion of eddies reduces the turbulent
intensity of wakes away from the downstream face of the cylinder. Here as we move away from
the downstream face of the cylinder, small-scale eddies inside the turbulent wake start to diffuse
in large-scale eddies and results in the growth of larger lumps of wakes with less intensity.

Figure 4.3 presents the profile of time-and spanwise-averaged streamwise velocity along
the centerline (z=0) from the downstream face of the cylinder for the D3Q15, D3Q19, and D3Q27
discrete velocity models of LBM (represented by red, green and blue markers respectively). The
notation < · > denotes time-and spanwise-averaging. The obtained results are compared with the
experimental results conducted by Nakagawa et al. [1999] and FVM-based numerical simulation

38



(a)

(b)

(c)

Figure 4.2 : Flow behavior of instantaneous streamwise velocity for (a)D3Q15, (b)D3Q19, and (c)D3Q27
velocity models.

results of Kim et al. [2004]. All numerical procedures shown in this study are showing a similar
pattern except for minor differences in the numerical value. The results show the asymptotic
behavior for all studies on all downstream locations beyond x∗/d ≈ 2.4 ( where x∗ is the streamwise
distance from the downstream face of the cylinder) because no vortices have been identified. In
contrast, some deviations have been observed before this downstream location, which is more
prevalent up to x∗/d ≈ 0.8 due to the presence of strong vortices in this region, as shown in Figure
4.2. The deviation in the present study and experiment has been expected because of the boundary
condition assumption applied in other studies. The present study assumes the finite depth of the
duct, whereas, in other studies, it is assumed to be an infinite channel that affects the velocity
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Figure 4.3 : Centerline distribution of mean streamwise velocity (red plus : D3Q15, green asterisk :

D3Q19, blue open circle : D3Q27, open triangle : Kim et al. [2004], filled square: Nakagawa
et al. [1999]).

profile and intensity of the vortices. Finite duct assumption would lead to a lower velocity at the
spanwise faces of the duct with a no-slip boundary condition leading to a higher velocity at the
center location for fixed Red = 3000. Moreover, finer grid resolution near the downstream face of
the cylindermay result inmore accurate agreementwith data available in the literature [Nakagawa
et al., 1999; Kim et al., 2004]. While comparing present results with them, we found that near the
downstream face of the cylinder the agreement between LBM results and experimental data is
significantly large. This may be due to the impact of cylinder edge on the flow field, resulting in
an increase in velocity just before upstream in the experimental observations. This phenomenon is
ignored in the present simulation, and it has been assumed to have a smooth transition from inlet
to upstream face and up to past the cylinder [Agarwal, 2020].

Figure 4.4 presents the profiles of mean streamwise velocity at the different streamwise
locations. The results are drawn for half of the y-axis (i.e., from y = 0 to y = H/2) due to symmetry
in the y-axis. In Figure 4.4(a), the results show the lower velocity close to y= 0 for the present study.
This is due to the high-intensity vortices, which can be seen at that location, as evident in Figure
4.2. Furthermore, its negative velocity leads to a decrease in the calculation of mean streamwise
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Figure 4.4 : Profiles of mean streamwise velocity (red plus : D3Q15, green asterisk : D3Q19, blue open
circle : D3Q27, open triangle : Kim et al. [2004], filled square: Nakagawa et al. [1999]) : (a)
x∗/d = 1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0, (d) x∗/d = 8.5.
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velocity. However, the momentum far away from the location (y = 0) for fixed Reynolds number,
Re, increased to counter the momentum at a location near to (y = 0), which gives rise to the intense
vortices just behind the downstream face of the cylinder. Moreover, the lower mean streamwise
velocity has been observed near the center (y = H/2) to counter the intense vortices again. The
results for other figures away from the downstream face of the cylinder, the effect of the vortices
diminishes, and all studies give the same results as expected.
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Figure 4.5 : Profiles of mean normal velocity (red plus : D3Q15, green asterisk : D3Q19, blue open circle
: D3Q27, open triangle : Kim et al. [2004], filled square: Nakagawa et al. [1999]) : (a) x∗/d =
1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0, (d) x∗/d = 8.5.

Figure 4.5 shows the profile of mean normal velocity. The results show that far from
downstream cylinder face, small scale eddies are diffused into large scale eddies, it becomes easy
for any numerical schemes to capture moment accurately, as evident in Figure 4.5(d). The moment
in the perpendicular direction to the flow should follow the net-zero moment transfer for which
all studies agree far away from the cylinder, but just after the downstream face of the cylinder, the
deviation on moment transfer is plotted in Figure 4.5(a). And, it has been found that the D3Q27
velocity model gives slightly better results in the high turbulent region just after the downstream
face of the cylinder.
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Figure 4.6 : Profiles of RMS streamwise velocity fluctuations (red plus : D3Q15, green asterisk : D3Q19,
blue open circle : D3Q27, open triangle : Kim et al. [2004], filled square: Nakagawa et al.
[1999]) : (a) x∗/d = 1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0, (d) x∗/d = 8.5.

Similar observations have beenmade for RMS streamwise velocity fluctuations and normal
velocity fluctuations, as shown in Figures 4.6 and 4.7. D3Q27, velocity model, shows the less
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Figure 4.7 : Profiles of RMS normal velocity fluctuations (red plus : D3Q15, green asterisk : D3Q19, blue
open circle : D3Q27, open triangle : Kim et al. [2004], filled square: Nakagawa et al. [1999])
: (a) x∗/d = 1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0, (d) x∗/d = 8.5..
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Figure 4.8 : Profiles of Reynolds shear stress (red plus : D3Q15, green asterisk : D3Q19, blue open circle
: D3Q27, open triangle : Kim et al. [2004], filled square: Nakagawa et al. [1999]) : (a) x∗/d =
1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0, (d) x∗/d = 8.5.

randomness in velocity values for the perpendicular direction of flow near the downstream face
of the cylinder compared to other discrete velocity models (i.e., D3Q15 and D3Q19); however, the
results predicted similar flow pattern away from the downstream face of the cylinder for all the
discrete velocity models. Reynolds shear stress, which is responsible for drag force on a body,
is plotted in Figure 4.8. All schemes predict similar observations far from the flow field with
deviations among them near the downstream face of the cylinder. Stress has expected to be highest
at the lower edge of the cylinder for an inviscid flow, which is perfectly captured by the present
study for the D3Q27 velocity model. Also, it is already mentioned above that the high-intensity
vortices have been observed at the center location near the downstream face of the cylinder
resulting in the high gradient in velocity vector, which further gives a considerable large shear
stress value at that location. Earlier studies by Nakagawa et al. [1999] and Kim et al. [2004] show
a lag in capturing the stress, but overall stress distribution is consistent with the D3Q27 scheme,
whereas other velocitymodels in the present study give over prediction of shear stress distribution.
The more isotropic nature of the D3Q27 scheme leads to the stress distribution similar to earlier
studies.
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Results for drag coefficient derived from shear stress are tabulated in Table 4.1. Results
show good agreement between the present study for D3Q27 velocity model and studies performed
by Kim et al. [2004] for the calculation of drag force in the presence of turbulent flow past a bluff
body (here referred to as a square cylinder).

Table 4.1 : Comparison of drag coefficient

Boundary Conditions Grid Dimension C̄D

D3Q15 800×200×120 2.4893
D3Q19 800×200×120 2.5216
D3Q27 800×200×120 2.7508

Kim et al. [2004] - 2.76

The present study shows that the LBM method can be implemented fairly to predict
turbulent flow in a closed system of fluid flow for a bluff body as an obstruction. LBM is quite
able to capture small-scale flow phenomena and large-scale eddies in a turbulent flow. Themethod
can adequately identify the region of vortices and turbulent wake with its intensity. Since the LBM
scheme can be effectively implemented for a highly parallelized computing environment due to
its local collision operations, the code used in this study has been evaluated for its performance on
GPU accelerated parallel environment for all the discrete velocitymodels and results are presented
in Table 4.2. The computational time taken by all the discrete velocity models (D3Q15, D3Q19,
D3Q27) concerning the number of threads per block on the GPU cluster has been presented. As the
maximumnumber of threads per block forNVIDIATesla P100 is 1024, simulationswere performed
by varying the number of threads per block (i.e., 1, 8, 64, and 512). The results were collected after
1000 time steps. The MLUPS has been calculated for a varying number of threads per block to
measure the performance for all the discrete velocity models. The MLUPS can be calculated with
expression given as:

MLUPS =
nx ×ny ×nz ×no. o f iterations

106 × tr
(4.1)

where, nx, ny and nz are the domain sizes in x, y, and z-dimension and tr is the simulation
run time.

The results for the computational efficiency of the discrete velocity models can also be
observed in Figure 4.9. As shown in Figure 4.9, the difference between MLUPS values for all the
discrete velocity models with a single thread per block is less compared to multiple threads in a
block. The result shows thatwith an increasing number of threads per block, the difference between
theMLUPS value among the discrete velocitymodels increases. Also, one can easily visualize from
the plot that increasing the number of velocities deteriorates the computational performance as
expected.

4.2.2 Effect of Boundary Conditions
Here, the effect of the modified BB method and IB method for the treatments of the

no-slip boundary condition is presented. A particular explicit diffuse direct-forcing immersed
boundary-lattice Boltzmann method (IB-LBM) is adopted for the present work. The details and
formulation for the BB and IB method are presented in Section 3.2. In this work, the cheap-clipped
fourth-order polynomial function proposed byDeen et al. [2004] as discussed in Section 3.2.2 is used
to mapped unforced velocities at the Eulerian grid nodes on boundary nodes and for distribution
of boundary forces on the Eulerian nodes.
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Table 4.2 : Computational efficiency of discrete velocity models on GPU cluster

Velocity Model Threads per block Computation time (s) MLUPS

1 964 19.92
8 212 90.57

D3Q15 64 145 132.41
512 102 188.23
1 1025 18.73
8 244 78.69

D3Q19 64 184 104.35
512 138 139.13
1 1452 13.22
8 320 60.00

D3Q27 64 262 73.28
512 178 107.86

Figure 4.9 : GPU performance of discrete velocity.

Figure 4.10 presents the profile of streamwise velocity along the centerline (z = 0) from the
downstream face of the cylinder. The results obtained fromBB and IB are in fair agreementwith the
experimentalmeasurement ofNakagawa et al. [1999], andLES results of Kim et al. [2004]. However,
it can be seen that near the downstream face of the cylinder, results show a slight divergence from
the experimental and numerical results [Nakagawa et al., 1999; Kim et al., 2004].
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Figure 4.10 : Centerline distribution of mean streamwise velocity (asterisk : BB, open circle : IB, open
triangle : Kim et al. [2004], filled square : Nakagawa et al. [1999]).

Figure 4.11 : Profiles ofmean streamwise velocity (asterisk : BB, open circle : IB, open triangle : Kim et al.
[2004], filled square : Nakagawa et al. [1999]) : (a) x∗/d = 1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0,
(d) x∗/d = 8.5.

Figure 4.12 : Profiles of mean normal velocity (asterisk : BB, open circle : IB, open triangle : Kim et al.
[2004], filled square : Nakagawa et al. [1999]) : (a) x∗/d = 1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0,
(d) x∗/d = 8.5.

Profiles of time-and spanwise-averaged mean velocities, turbulent fluctuations, and
Reynolds shear stress are shown in Figures 4.11-4.15, respectively, for different streamwise location
(x*/d = 1.0, 3.5. 6.0, 8.5). In Figure 4.11(a), a similar deviation has been observed in the mean
streamwise velocity near the downstream face of the cylinder for both BB and IB methods. The

45



other figures show excellent agreement with the literature [Nakagawa et al., 1999; Kim et al., 2004]
away from the cylinder face. The results for mean normal velocity shown in Figure 4.11 presents
a good match for both BB and IB methods with experimental measurements and LES results.
Moreover, it can be seen from Figures 4.11 and 4.12 for both BB and IB methods that the mean
streamwise velocity is much affected by the pair of vortices formed behind the cylinder compared
to mean normal velocity.

Figure 4.13 : Profiles of RMS streamwise velocity fluctuations (asterisk : BB, open circle : IB, open
triangle : Kim et al. [2004], filled square : Nakagawa et al. [1999]) : (a) x∗/d = 1.0, (b) x∗/d =
3.5, (c) x∗/d = 6.0, (d) x∗/d = 8.5.

Figure 4.14 : Profiles of RMS normal velocity fluctuations (asterisk : BB, open circle : IB, open triangle :
Kim et al. [2004], filled square : Nakagawa et al. [1999]) : (a) x∗/d = 1.0, (b) x∗/d = 3.5, (c)
x∗/d = 6.0, (d) x∗/d = 8.5.

Figure 4.15 : Profiles of Reynolds shear stress (asterisk : BB, open circle : IB, open triangle : Kim et al.
[2004], filled square : Nakagawa et al. [1999]) : (a) x∗/d = 1.0, (b) x∗/d = 3.5, (c) x∗/d = 6.0,
(d) x∗/d = 8.5.

For the case of turbulent fluctuations, as shown in Figures 4.13 and 4.14, disagreement also
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continues in the RMS streamwise velocity fluctuations near the downstream face of the cylinder are
quickly recovered in the downstream direction away from the cylinder for both BB and IBmethod.
Figure 4.15 shows profiles of Reynolds shear stress at a different streamwise location, and similar
variation is observedwith both BB and IBmethods near the downstream face of cylinder compared
to Nakagawa et al. [1999] and Kim et al. [2004] results. The results on other streamwise locations
displayed excellent correspondence with literature data Nakagawa et al. [1999]; Kim et al. [2004].

The comparison of mean drag coefficient C̄D is shown in Table 4.3. The table shows good
agreement of the mean drag coefficient obtained from the BB method with the LES results of Kim
et al. [2004]. However, a slightly higher value in the simulation of Kim et al. [2004] can be because
of capturing the resistance of the flow field by the edge of the cylinder surface, which is absent in
our study. The IB method over-predicted the mean drag coefficient. Further, the comparison of
the BB and IB method based on computational efficiency is shown in Table 4.4. The computational
time taken by both approaches concerning the number of threads per block on the GPU cluster is
presented. The performance is measured from the MLUPS, and expression is given in Eqn. (4.1).
As seen in Table 4.4., theMLUPS numbers for the BBmethod are 65.01, 89.95, and 163.57, whereas

Table 4.3 : Comparison of drag coefficient

Boundary Conditions Grid Dimension C̄D

BB 800×200×120 2.52
IB 800×200×120 2.96

Kim et al. [2004] - 2.76

Table 4.4 : Computational efficiency of BB and IB method on GPU cluster

Velocity Model Threads per block Computation time (s) MLUPS

BB 8 295.34 65.01
64 213.44 89.95
512 117.37 163.57

IB 8 431.96 44.45
64 327.79 58.57
512 208.87 91.92

MLUPS numbers for the IB method are 44.45, 58.57, and 91.92 for 8, 64, and 512 threads per block,
respectively. It shows that the computationally BB approach is faster than the IBmethod. It can also
be observed from Table 4.4 that there is a difference of approx 32% in MLUPS of BB and IB method
for 8 number of threads per block. This difference increases with the increasing number of threads
per block (i.e., approx 34% for 64 number of threads per block and approx 44% for 512 number
of threads per block). It summarizes that the difference in the computational performance of BB
and IB on the GPU cluster is small for a lesser number of threads per block, while the increasing
number of threads per block deteriorates the performance of the IB method compared to the BB
method. For enhancing the computational performance of the IB method, the continuous transfer
of variables from the host (i.e., CPU) to the device (i.e., GPU) and vice-versa must be avoided.
This continuous transfer of data from the host to device and vice-versa is because the velocity
components of surrounding fluid nodes across the boundary nodes are transferred from the device
(i.e., GPU) to the host in order to calculate the forces at the boundary nodes on the host (i.e., CPU)
architecture, and these forces then again transferred to the device for further simulation.
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4.3 SUMMARY
In this chapter, the simulation of turbulent flow over a bluff body using LBM is presented.

The chapter comprises the results of two studies. The first study reported the effect of 3D discrete
velocity sets (i.e., D3Q15, D3Q19, and D3Q27) of LBM on the flow behavior of turbulent flow over a
bluff body. However, the impact of the different boundary conditions (i.e., BB and IB) is explored in
the second study. The simulations have been carried out for benchmark case of flow past a square
cylinder confined in a rectangular duct at Red = 3000 for both the studies. LES approach has been
used to simulate turbulent flow. The Smagorinsky SGS model is used to resolve the small-scale
turbulent structures. The obtained simulation results for both studies are validated through the
experimental and numerical results available in the literature. Moreover, a parallel computer code
has been developed using CUDA programming model to run on a multicore GPU platform, and
the computational performance has also been presented. For the first study, results are presented
for the comparative assessment of 3D discrete velocity sets (i.e., D3Q15, D3Q19, and D3Q27) of
LBM based on the accuracy and performance of the code in the GPU parallelized environment.
The results obtained from LBM-LES are stable and in good agreement with the experimental
data. Furthermore, results showed that the LBM method effectively captures the small-scale
phenomenon and large-scale fluid properties. The obtained results depicted better accuracy for
the D3Q27 velocity model over other discrete velocity models at the cost of computation time.
Parallelization of code reduces the computational cost drastically as more threads are available
for computation. Computation time for the D3Q27 velocity model has found almost 1.5 times
the computation time of the D3Q15 velocity model, and the ratio for computation times for both
schemes widens more as the number of threads increases. The study suggests that the LBM can
capture the turbulent flow even in the region of high Reynolds shear stress. The study provides
insight for selecting the suitable LBM discrete velocity scheme based on the accuracy required
and computational power needed, mainly for the simulation of benchmark problems of fluid flow
such as flow past a single obstacle. In another study, the simulaions are performed to visualize
the effect of boundary conditions on the flow behavior. The BB and IB method are taken into
consideration for the simulation. The results obtained fromboth the boundarymethod are in nearly
similar agreement with the experimental and numerical results obtained by other researchers in
the past studies. However, from a computational perspective, the obtained results show that the
bounce-back approach is computationally more efficient than the immersed boundary method.
The above studies are intended to be expanded to simulate complex fluid dynamics problems on
large domains, which will involve turbulent flow and fluid-structure interaction, and require high
computational performance. The same are discussed in the subsequent chapter.
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