
3
Methodology

This chapter provides a detailed description of the methodology used in the present thesis
work to simulate various fluid flow problems using LBM. First, the formulation for governing
equations of the particular SRT-LBM is introduced in detail. Secondly, the incorporation of LES
turbulence model in LBE is explained. Later, a comprehensive overview of the different boundary
conditions is also described in detail. Lastly, an explanation of the CUDA programming model for
parallelizing LBM code to make it suitable to run on multi-threaded GPU platform is presented.

The remainder of the chapter is organized as follows: Section 3.1 provides a detailed
description to the formulation of LBM, followed by the explanation of incorporating the LES
turbulence model in the LBM framework. The details of the boundary conditions are presented in
Section 3.2. Section 3.3 includes the information of the GPU architecture and the implementation
of the LBM algorithm on the GPU platform. Section 3.4 summarizes the chapter.

3.1 SIMULATION PROCEDURE
In this section, a comprehensive description of themethodology used in the thesis work has

been presented. The section starts with the detailed introduction of the SRT-LBM collision model
of LBM, used in the present thesis work to discretize the fluid domain, followed by the explanation
for incorporating the LES turbulence model in the LBE.

3.1.1 Single-Relaxation-Time (SRT) model
This subsection discussed the single relaxation time (SRT) model of LBM. SRT is the most

commonly used model of LBM for solving fluid flow problems [Qian et al., 1992]. SRT-LBM is
described here for D2Q9, D3Q15, D3Q19, and D3Q27 discrete velocity models of LBM [Yasuda et al.,
2017]. Figure 2.2 shows the lattice structure of D2Q9, D3Q15, D3Q19, and D3Q27 discrete velocity
models. The governing LBE for the SRT-LBM can be written as:

fk(⃗x+ e⃗k∆t, t +∆t) = fk(⃗x, t)+
1
τ
[ f eq

k (⃗x, t)− fk(⃗x, t)] (3.1)

where, fk and f eq
k are the particle and equilibrium distribution function along direction k at (⃗x, t), e⃗k

is the particle velocity vector in the kth direction, ∆t is the time step size, and τ is the single-relaxation
time parameter that controls the rate of approach to equilibrium [Perumal and Dass, 2015]. The
above equation for SRT-LBM consists of two essential steps, namely streaming and collision steps.

Collision step: In the step particle collides locally, The step relaxes the particle distribution
function fk to the equilibrium distribution value f eq

k at each lattice location [Hecht and Harting,
2010]. The mathematical expression for the step can be written as:

f
′
k(⃗x, t) = fk(⃗x, t)−

1
τ
[ fk(⃗x, t)− f eq

k (⃗x, t)] (3.2)

Streaming step: The step is not local, and each of the particle distribution fk propagate to

15



3

4

12
5

6

7

8

9

10 11

12

1313

14

(a)

3

4

12
5

6

7

8 9

10

11

18

17

13

14

12

16

15

(b)

3

4

12
5

6

7

8 9

10

11

18

17

13

14

12

16

15

19 20

2223

21

24

25

26

(c)

Figure 3.1 : Lattice structure of (a) D2Q9, (b) D3Q15, (c) D3Q19, and (d) D3Q27 discrete velocity models.

neighboring lattice site in the assigned direction of particle velocity vector e⃗k.

fk(⃗x+ e⃗k∆t, t +∆t) = f
′
k(⃗x, t) (3.3)

where fk and f
′
k represent the particle distribution function at the pre-collision and

post-collision states, respectively [Perumal and Dass, 2015]. The corresponding equation to obtain
equilibrium distribution function f eq

k is given as:

f eq
k = wkρ

[
1+

e⃗k .⃗u
c2

s
+

(⃗ek · u⃗)2

2c4
s

− u⃗ · u⃗
2c2

s

]
(3.4)

where, w is the weight factor, ρ is the fluid density , u⃗ = (ux,uy,uz) is the macroscopic fluid
velocity vector, and cs is the speed of sound which is related to lattice speed, c, and equal to cs =

c√
3
for D3Q15, D3Q19, and D3Q27 discrete velocity models. Also, the lattice speed, c = ∆x

∆t , and ∆x
represent the size of the lattice and ∆t is the time-step size. The corresponding discrete velocity
vector e⃗k and weights wk for the D3Q15 lattice structure are given as:

e⃗k =


c(±1,0,0),c(0,±1,0),c(0,0,±1), k = 1....6
c(±1,±1,±1), k = 7....14
c(0,0,0), k = 15

(3.5)

wk =


1
9 , k = 1....6
1

72 , k = 7....14
2
9 , k = 15

(3.6)

16



For D3Q19 lattice structure, the discrete velocity vector e⃗k and weights wk are expressed as:

e⃗k =


c(±1,0,0),c(0,±1,0),c(0,0,±1), k = 1....6
c(±1,±1,0),c(±1,0,±1),c(0,±1,±1), k = 7....18
c(0,0,0), k = 19

(3.7)

wk =


1
18 , k = 1....6
1
36 , k = 7....18
1
3 , k = 19

(3.8)

For D3Q27 lattice structure, the discrete velocity vector e⃗k and weights wk are expressed as:

e⃗k =


c(±1,0,0),c(0,±1,0),c(0,0,±1), k = 1....6
c(±1,±1,0),c(±1,0,±1),c(0,±1,±1), k = 7....18
c(±1,±1,±1), k = 19....26
c(0,0,0), k = 27

(3.9)

wk =


2
27 , k = 1....6
1
54 , k = 7....18

1
216 , k = 19....26
8
27 , k = 27

(3.10)

The relaxation time parameter in Eqn. (3.1) depends on the kinematic viscosity of the fluid is given
as:

ν =

(
2τ −1

6

)
(∆x)2

∆t
(3.11)

The hydrodynamic fields i.e. density ρ and momentum density ρ u⃗ can be calculated from the
particle distribution function fk as follows:

ρ = ∑
k

fk = ∑
k

f eq
k , ρ u⃗ = ∑

k
e⃗k fk = ∑

k
e⃗k f eq

k (3.12)

3.1.2 LES Turbulent Model in LBM
An essential aspect of the present thesis work is the modeling of turbulent eddies, as the

Reynolds number used in the simulations indicates a robust, turbulent flow. The direct simulation
is not feasible due to the limitation of the computational resources. DNS would require a fine
meshing of the domain and an enormous number of time steps to model the turbulent flow.
Thus, LES is chosen in the present thesis work for the modeling of turbulent flow. LES has
been widely accepted by researchers for the simulation of turbulent flows because it is flexible
for implementation on complex geometries, provides comprehensive information for different
turbulent statistics, and requires less computational power as compared to DNS [Ayranci et al.,
2012]. The idea behind the approach is to decompose the flow variables into large and small-scale
structures by specifying a filtering procedure [Stephen B., 2000]. In LES, the process assumed
that small-scale flow structures are universal and of isotropic nature (i.e., independent of the flow
geometry). As a result, it provides an advantage to the method for modeling turbulent flow with
relative ease [Derksen and Van den Akker, 1999]. The procedure enables large-scale structures
to be resolved explicitly in grid calculation and uses the SGS model for the small-scale, turbulent
structures. The general filtering operation is given as:

ϕ(x) =
∫

ϕ(x′)G(x,x′)dx′ (3.13)

17



where ϕ is the spatial dependent quantity and G is the kernel function and integral is extended
over the entire domain [Hou et al., 1994; Koda and Lien, 2015]. The filtered SRT-LBM equation can
be written as:

f k(⃗x+ e⃗k∆t, t +∆t) = f k(⃗x, t)−
1
τt
[ f k(⃗x, t)− f eq

k (⃗x, t)] (3.14)

where f eq
k and f k and the filtered quilibrium distribution function and particle distribution

function, respectively. In the present thesis work, the SGSmodel (also known as the eddy-viscosity
model) is adopted to resolve small-scale structures. The eddy viscosity term νSGS can be obtained
from filter width ∆ (with a size equal to grid spacing ∆x) and characteristic filtered rate of strain S.
The expression for the same is given as:

νSGS = (Cs∆)2S

S =
√

2∑
i j

Si jSi j
(3.15)

where Cs is the Smagorinsky constant, Si j = (∂ j⃗ui + ∂i⃗u j) is the filtered strain rate tensor. The
subgrid closure can be implemented directly in the LBM equation by simply replacing physical
kinematic viscosity ν , with the total effective viscosity νt in collision step [Koda and Lien, 2015].
The expression for total effective viscosity νt is given as:

νt = ν +νSGS (3.16)

In LBM, the viscosity of fluid is related to the relaxation time parameter as given in Eq.(3.11). Thus,

νt =

(
2τt −1

6

)
(∆x)2

∆t
(3.17)

on solving Eqn.(3.11),(3.15)-(3.17), we get:

τt = τ +
3∆t(Cs∆)2S

(∆x)2 (3.18)

where τt is total value of the relaxation time. The filtered strain rate tensor Si j can be obtained
directly from the non-equilibrium momentum flux tensor Πi j given as:

Πi j = ∑
k

e⃗ki⃗ek j( f i − f eq
i ) =

−2ρτt(∆x)2Si j

3∆t
(3.19)

Also,

Q1/2 =
√

Πi j : Πi j =

√
2ρτt(∆x)2S

3∆t
(3.20)

Substituting Eq. (3.18) in Eq. (3.20) gives the expression for the characteristic filtered rate of strain
S:

S =
−τρc∆x+

√
(τρc∆x)2 +18

√
2(Cs∆)2Q1/2

6ρ(Cs∆)2 (3.21)

Finally, on substituting Eq. (3.21) in Eq. (3.18) gives:

τt =
τ
2
+

√
(τρc∆x)2 +18

√
2(Cs∆)2Q1/2

2ρc
(3.22)

18



3.2 BOUNDARY CONDITIONS
Boundary conditions play a vital role in lattice Boltzmann simulation. An individual

used distribution functions ( fk) to implement boundary conditions in LBM instead of using
hydrodynamics variables [Mussa et al., 2009]. Therefore, the appropriatemathematical expressions
need to be determined to obtain the distribution functions at the boundary nodes. The researchers
developed various methods to implement constant velocity inlet, no-slip, free-slip boundary
conditions in the frame of LBM. The details of some of the boundary conditions used in the present
thesis work are described below:

3.2.1 On-site Velocity Boundary Condition
Zou and He [1997] was the first who proposed the on-site velocity boundary condition

for the D2Q9 lattice structure in order to simulate 2-D flow. The work presented by Zou and He
[1997] also provides an overview of the on-site velocity boundary condition for the D3Q15 lattice
model for 3-D flow simulation. The work was further studied by Kutay et al. [2006] to demonstrate
the velocity boundary condition for the D3Q19 lattice model. The boundary condition proposed by
Kutay et al. [2006] suffers from the limitation of inflow being perpendicular to the boundary plane.
Later, Hecht and Harting [2010] modified the on-site velocity boundary condition with variable
influx directions for the D3Q19 lattice structure. The present section discussed the on-site velocity
boundary conditions for the different three-dimension lattice structures of LBM. The geometry
for the D3Q15, D3Q19, and D3Q27 lattice structure are shown in Figure 3.1. The benchmark case of
incompressible laminar flow through a 3-D square duct, as shown in Figure 3.2, has been chosen
to derive the boundary condition. The mathematical expression for the on-site velocity boundary
for each of the D3Q15, D3Q19, and D3Q27 lattice structure can be written as:

x

y

z
L

W

uy = 0 
ux = ux 

uz = 0 

Figure 3.2 : Schematic representation of flow in 3D square duct

• For D3Q15 lattice structure: The on-site velocity boundary condition for the D3Q15 lattice
structure can be expressed as follows:

1. Consider the left boundary (i.e x = 0) as inlet as shown in Figure 3.2. The inlet is on the
yz plane. The density ρ for the D3Q15 lattice structure from Eqn.(3.12) can be written as:

ρ = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10

+ f11 + f12 + f13 + f14 + f15
(3.23)

ρux = f1 + f7 + f9 + f11 + f13

− ( f2 + f8 + f10 + f12 + f14)
(3.24)

After the streaming steps in the LBE, the distribution functions fk, (k =
2,3,4,5,6,8,10,12,14,15) are known. The velocity components uy = uz = 0 are fixed at

19



inlet of the square duct. The velocity component ux and unknown fluid populations, fk,
(k = 1,7,9,11,13) needs to be determined. These can be obtained as follows:

On subtracting Eqn.(3.24) from Eqn.(3.23) we get

ρ =
1

1−ux

[
f3 + f4 + f5 + f6 + f15

+2( f2 + f8 + f10 + f12 + f14)
] (3.25)

or

ux = 1− 1
ρ
[

f3 + f4 + f5 + f6 + f15

+2( f2 + f8 + f10 + f12 + f14)
] (3.26)

Considering the bounce-back rule suggested by Zou and He [1997] for the
non-equilibrium part of the particle distribution function fk (k = 1, 7, 9, 11, 13) we have:

f1 − f eq
1 = f2 − f eq

2 (3.27)

It gives:

f1 = f2 +
2
3

ρux (3.28)

Also,

f7 = f8 ++
1
12

ρux −
1
4
[
( f3 − f4)+( f5 − f6)

]
(3.29)

f9 = f10++
1

12
ρux −

1
4
[
( f3 − f4)− ( f5 − f6)

]
(3.30)

f11 = f12++
1
12

ρux −
1
4
[
− ( f3 − f4)+( f5 − f6)

]
(3.31)

f13 = f14++
1
12

ρux −
1
4
[
− ( f3 − f4)− ( f5 − f6)

]
(3.32)

The on-site velocity boundary conditions for the other sides of the geometry can be obtained
using the same approach and similarly, we can derive the expressions for the unknown
distribution functions in the D3Q19 and D3Q27 lattice structure. These are given as follows:

• ForD3Q19 lattice structure: Hecht andHarting [2010] presented the on-site velocity boundary
condition for the D3Q19 lattice structure. The mathematical expressions are given as:

1. At the left boundary (i.e x = 0) as inlet:

ρ =
1

1−ux

[
f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + f19

+2( f2 + f11 + f12 + f13 + f14)
] (3.33)

or

ux = 1− 1
ρ
[

f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + f19

+2( f2 + f11 + f12 + f13 + f14)
] (3.34)

20



and

f1 = f2 +
1
3

ρux (3.35)

Similarly, we get

f8 = f11 +
ρ
6
(ux −uy)+Nx

y (3.36)

f7 = f12 +
ρ
6
(ux +uy)−Nx

y (3.37)

f9 = f14 +
ρ
6
(ux +uz)−Nx

z (3.38)

f10 = f13 +
ρ
6
(ux −uz)+Nx

z (3.39)

where

Nx
y =

1
2
[

f3 + f15 + f16 − ( f4 + f17 + f18)
]
− 1

3
ρuy (3.40)

Nx
z =

1
2
[

f5 + f11 + f15 − ( f6 + f16 + f18)
]
− 1

3
ρuz (3.41)

2. For the right boundary ((i.e. x = nx) as outlet:

ρ =
1

ux +1
[

f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + f19

+2( f1 + f7 + f8 + f9 + f10)
] (3.42)

or

ux =−1+
1
ρ
[

f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + f19

+2( f1 + f7 + f8 + f9 + f10)
] (3.43)

and

f2 = f1 −
1
3

ρux (3.44)

f11 = f8 +
ρ
6
(uy −ux)−Nx

y (3.45)

f12 = f7 +
ρ
6
(−ux −uy)+Nx

y (3.46)

f14 = f9 +
ρ
6
(−ux −uz)+Nx

z (3.47)

f13 = f10 +
ρ
6
(uz −ux)−Nx

z (3.48)

3. For the front boundary ((i.e. y = 0) as inlet:

ρ =
1

1−uy

[
f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f4 + f8 + f12 + f17 + f18)
] (3.49)

21



or

uy = 1− 1
ρ
[

f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f4 + f8 + f12 + f17 + f18)
] (3.50)

and

f3 = f4 +
1
3

ρuy (3.51)

f7 = f12 +
ρ
6
(uy +ux)−Ny

x (3.52)

f11 = f8 +
ρ
6
(uy −ux)+Ny

x (3.53)

f15 = f18 +
ρ
6
(uy +uz)−Ny

z (3.54)

f16 = f17 +
ρ
6
(uy −uz)+Ny

z (3.55)

where

Ny
x =

1
2
[

f1 + f9 + f10 − ( f2 + f13 + f14)
]
− 1

3
ρux (3.56)

Ny
z =

1
2
[

f5 + f9 + f13 − ( f6 + f10 + f14)
]
− 1

3
ρuz (3.57)

4. At the back boundary ((i.e. y = ny) as outlet:

ρ =
1

uy +1
[

f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f3 + f7 + f11 + f15 + f16)
] (3.58)

or

uy =
1

1−ρ
[

f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f3 + f7 + f11 + f15 + f16)
] (3.59)

and

f4 = f3 −
1
3

ρuy (3.60)

f12 = f7 +
ρ
6
(−uy −ux)+Ny

x (3.61)

f8 = f11 +
ρ
6
(−uy +ux)−Ny

x (3.62)

f18 = f15 +
ρ
6
(−uy −uz)+Ny

z (3.63)

f17 = f16 +
ρ
6
(−uy +uz)−Ny

z (3.64)

22



5. For the bottom boundary ((i.e. z = 0) as inlet:

ρ =
1

1−uz

[
f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f6 + f10 + f14 + f16 + f18)
] (3.65)

or

uz = 1− 1
ρ
[

f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f6 + f10 + f14 + f16 + f18)
] (3.66)

and

f5 = f6 +
1
3

ρuz (3.67)

f9 = f14 +
ρ
6
(uz +ux)−Nz

x (3.68)

f13 = f10 +
ρ
6
(uz −ux)+Nz

x (3.69)

f15 = f18 +
ρ
6
(uz +uy)−Nz

y (3.70)

f17 = f16 +
ρ
6
(uz −uy)+Nz

y (3.71)

where

Nz
x =

1
2
[

f1 + f7 + f8 − ( f2 + f11 + f12)
]
− 1

3
ρux (3.72)

Nz
y =

1
2
[

f3 + f7 + f11 − ( f4 + f8 + f12)
]
− 1

3
ρuy (3.73)

6. For the top boundary ((i.e. z = nz) as outlet:

ρ =
1

1−uz

[
f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f5 + f9 + f13 + f15 + f17)
] (3.74)

or

uz =−1+
1
ρ
[

f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f5 + f9 + f13 + f15 + f17)
] (3.75)

and

f6 = f5 −
1
3

ρuz (3.76)

f10 = f13 +
ρ
6
(−uz +ux)+Nz

x (3.77)

f14 = f9 +
ρ
6
(−uz −ux)−Nz

x (3.78)

f16 = f17 +
ρ
6
(−uz +uy)+Nz

y (3.79)

f18 = f15 +
ρ
6
(−uz −uy)−Nz

y (3.80)

23



• For D3Q27 lattice structure:

1. At the left boundary (i.e x = 0) as inlet:

ρ =
1

1−ux

[
f3 + f4 + f5 + f6 + f15

+ f16 + f17 + f18 + f19 +2( f2 + f11 + f12

+ f13 + f14 + f21 + f23 + f25 + f27)
] (3.81)

or

ux = 1− 1
ρ
[

f3 + f4 + f5 + f6 + f15

+ f16 + f17 + f18 + f19 +2( f2 + f11 + f12

+ f13 + f14 + f21 + f23 + f25 + f27)
] (3.82)

f1 = f2 +
4
9

ρux (3.83)

Similarly, we get

f7 = f12 +
ρ
9
(ux +uy)−Nx

y (3.84)

f8 = f11 +
ρ
9
(ux −uy)+Nx

y (3.85)

f9 = f14 +
ρ
9
(ux +uz)−Nx

z (3.86)

f10 = f13 +
ρ
9
(ux −uz)+Nx

z (3.87)

f20 = f21 +
ρ
36

[
ux +(uy +uz)

]
−Nx

y −Nx
z (3.88)

f22 = f23 +
ρ
36

[
ux +(uy −uz)

]
−Nx

y +Nx
z (3.89)

f24 = f25 +
ρ
36

[
ux − (uy −uz)

]
+Nx

y −Nx
z (3.90)

f26 = f27 +
ρ
36

[
ux − (uy +uz)

]
+Nx

y +Nx
z (3.91)

where

Nx
y =

1
6
[

f3 + f15 + f16 − ( f4 + f17 + f18)
]
− 1

9
ρuy (3.92)

Nx
z =

1
6
[

f5 + f15 + f17 − ( f6 + f16 + f18)
]
− 1

9
ρuz (3.93)

Similar to the left boundary, the on-site velocity boundary conditions on other sides for
the D3Q27 lattice structure is given as:

2. At the right boundary (i.e. x = nx) as outlet: we get

ρ =
1

ux +1
[

f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + f19

+2( f1 + f7 + f8 + f9 + f10 + f20 + f22 + f24 + f26)
] (3.94)

24



gives

ux =−1+
1
ρ
[

f3 + f4 + f5 + f6 + f15 + f16 + f17 + f18 + f19

+2( f1 + f7 + f8 + f9 + f10 + f20 + f22 + f24 + f26)
] (3.95)

And, the unknown distributions are:

f2 = f1 −
4
9

ρux (3.96)

And,

f12 = f7 −
ρ
9
(uy +ux)+Nx

y (3.97)

f11 = f8 +
ρ
9
(uy −ux)−Nx

y (3.98)

f14 = f9 −
ρ
9
(uz +ux)+Nx

z (3.99)

f13 = f10 +
ρ
9
(uz −ux)−Nx

z (3.100)

f21 = f20 −
ρ
36

[
ux +(uy +uz)

]
+Nx

y +Nx
z (3.101)

f23 = f22 −
ρ
36

[
ux +(uy −uz)

]
+Nx

y −Nx
z (3.102)

f25 = f24 −
ρ
36

[
ux − (uy −uz)

]
−Nx

y +Nx
z (3.103)

f27 = f26 −
ρ
36

[
ux − (uy +uz)

]
−Nx

y −Nx
z (3.104)

3. At the front boundary (i.e. y = 0) as inlet: we obtain

ρ =
1

1−uy

[
f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f4 + f8 + f12 + f17 + f18 + f21 + f23 + f24 + f26)
] (3.105)

gives

uy = 1− 1
ρ
[

f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f4 + f8 + f12 + f17 + f18 + f21 + f23 + f24 + f26)
] (3.106)

And, the unknown density distribution functions are:

f3 = f4 +
4
9

ρuy (3.107)

Also,

f7 = f12 +
ρ
9
(uy +ux)−Ny

x (3.108)

f11 = f8 +
ρ
9
(uy −ux)+Ny

x (3.109)

f15 = f18 +
ρ
9
(uy +uz)−Ny

z (3.110)

25



f16 = f17 +
ρ
9
(uy −uz)+Ny

z (3.111)

f20 = f21 +
ρ
36

[
uy +(ux +uz)

]
−Ny

x −Ny
z (3.112)

f22 = f23 +
ρ
36

[
uy +(ux −uz)

]
−Ny

x +Ny
z (3.113)

f25 = f24 +
ρ
36

[
uy − (ux +uz)

]
+Ny

x +Ny
z (3.114)

f27 = f26 +
ρ
36

[
uy − (ux −uz)

]
+Ny

x −Ny
z (3.115)

where

Ny
x =

1
6
[

f1 + f9 + f10 − ( f2 + f13 + f14)
]
− 1

9
ρux (3.116)

Ny
z =

1
6
[

f5 + f9 + f13 − ( f6 + f10 + f14)
]
− 1

9
ρuz (3.117)

4. At the back boundary (i.e. y = ny) as outlet: we have

ρ =
1

uy +1
[

f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f3 + f7 + f11 + f15 + f16 + f20 + f22 + f25 + f27)
] (3.118)

gives

uy =−1+
1
ρ
[

f1 + f2 + f5 + f6 + f9 + f10 + f13 + f14 + f19

+2( f3 + f7 + f11 + f15 + f16 + f20 + f22 + f25 + f27)
] (3.119)

And, the unknown fluid populations are:

f4 = f3 −
4
9

ρuy (3.120)

Also,

f12 = f7 −
ρ
9
(ux +uy)+Ny

x (3.121)

f8 = f11 +
ρ
9
(ux −uy)−Ny

x (3.122)

f18 = f15 −
ρ
9
(uz +uy)+Ny

z (3.123)

f17 = f16 +
ρ
9
(uz −uy)−Ny

z (3.124)

f21 = f20 −
ρ
36

[
uy +(ux +uz)

]
+Ny

x +Ny
z (3.125)

f23 = f22 −
ρ
36

[
uy +(ux −uz)

]
+Ny

x −Ny
z (3.126)

f24 = f25 −
ρ
36

[
uy − (ux +uz)

]
−Ny

x −Ny
z (3.127)

f26 = f27 −
ρ
36

[
uy − (ux −uz)

]
−Ny

x +Ny
z (3.128)

26



5. At the bottom boundary (i.e. z = 0) as inlet:

The density ρ expression is given by

ρ =
1

1−uz

[
f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f6 + f10 + f14 + f16 + f18 + f21 + f22 + f25 + f26)
] (3.129)

gives

uz = 1− 1
ρ
[

f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f6 + f10 + f14 + f16 + f18 + f21 + f22 + f25 + f26)
] (3.130)

Thus,

f5 = f6 +
4
9

ρuz (3.131)

Also,

f9 = f14 +
ρ
9
(uz +ux)−Nz

x (3.132)

f13 = f10 +
ρ
9
(uz −ux)+Nz

x (3.133)

f15 = f18 +
ρ
9
(uz +uy)−Nz

y (3.134)

f17 = f16 +
ρ
9
(uz −uy)+Nz

y (3.135)

f20 = f21 +
ρ
36

[
uz +(ux +uy)

]
−Nz

x −Nz
y (3.136)

f23 = f22 +
ρ
36

[
uz − (ux +uy)

]
+Nz

x +Nz
y (3.137)

f24 = f25 +
ρ
36

[
uz +(ux −uy)

]
−Nz

x +Nz
y (3.138)

f27 = f26 +
ρ
36

[
uz − (ux −uy)

]
+Nz

x −Nz
y (3.139)

where

Nz
x =

1
6
[

f1 + f7 + f8 − ( f2 + f11 + f12)
]
− 1

9
ρux (3.140)

Nz
y =

1
6
[

f3 + f7 + f11 − ( f4 + f8 + f12)
]
− 1

9
ρuy (3.141)

6. At the top (i.e. z = nz) boundary as outlet: we have

ρ =
1

uz +1
[

f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f5 + f9 + f13 + f15 + f17 + f20 + f23 + f24 + f27)
] (3.142)

27



This can be rewritten as:

uz =−1+
1
ρ
[

f1 + f2 + f3 + f4 + f7 + f8 + f11 + f12 + f19

+2( f5 + f9 + f13 + f15 + f17 + f20 + f23 + f24 + f27)
] (3.143)

The unknown density distribution functions can be computed as:

f6 = f5 −
4
9

ρuz (3.144)

Also,

f14 = f9 −
ρ
9
(ux +uz)+Nz

x (3.145)

f10 = f13 +
ρ
9
(ux −uz)−Nz

x (3.146)

f18 = f15 −
ρ
9
(uy +uz)+Nz

y (3.147)

f16 = f17 +
ρ
9
(uy −uz)−Nz

y (3.148)

f21 = f20 −
ρ
36

[
uz +(ux +uy)

]
+Nz

x +Nz
y (3.149)

f22 = f23 −
ρ
36

[
uz − (ux +uy)

]
−Nz

x −Nz
y (3.150)

f25 = f24 −
ρ
36

[
uz +(ux −uy)

]
+Nz

x −Nz
y (3.151)

f26 = f27 −
ρ
36

[
uz − (ux −uy)

]
−Nz

x +Nz
y (3.152)

3.2.2 Bounce-Back Boundary Conditions
The BB boundary condition is the most commonly used boundary condition in LBM to

obtain a no-slip condition at the boundarywalls. The key idea is to BB fluid particles in the opposite
direction once the fluid particles reach the boundary. There are several ways to implement the BB
schemes at the boundary. These are explained as below:

3.2.2 Full way bounce-back
The scheme is also referred to as the standard BB method [Guo and Shu, 2013]. The full

way BB method is the easiest to implement. In this method, the lattice points are located on the
fluid boundary, and after the streaming process, the unknown fluid populations at the boundary
nodes take the value of the fluid populations opposite in direction, as shown in Figure 3.3.

The method sees no collision operation on the fluid node at the wall boundary during
its implementation. The method provides the first-order accuracy to the solution. Despite the
popularity of this scheme due to its simplicity, the scheme is not flawless since it is not truly
mass-conservative. The scheme can be defined mathematically as:

fk(⃗x, t +∆t) = fk̄(⃗x, t +∆t) (3.153)

where, f is the post-streaming state of the distribution function, and (k, k̄) are the distribution
functions (fluid population) in the direction opposite to each other.

28



wall boundary

unknown fluid population 

f1

lattice points 

f2

f3 f4

f3

f2

f1

f4

wall boundary

Streaming

Figure 3.3 : 2D representation of the full way bounce-back method before (left) and after (right)
streaming process.

3.2.2 Half way bounce-back
In this approach, wall boundary is simply placed at a half distance between two lattice sites.

In other words, the wall boundary is located in between the ghost nodes and fluid nodes (or lattice
points) as shown in Figure 3.4. The collision operation is performed on all lattice sites. Themethod
is also called as bounce-back on the link (BBL) [Behrend, 1995]. Moreover, the significant features
of this boundary condition that it can provide second order accuracy and also conserve the mass
at the boundary wall. The scheme is defined with the expression given as:

fk(⃗x, t +∆t) = fk̄(⃗x, t
+) (3.154)

where fk̄(⃗x, t
+) represents the post-collision distribution function.

wall boundary

f1

f4

unknown fluid population 

lattice points 

f2

f3

f1

f4

f2

f3

f1

f4

f2

f3

f1

f4

f2

f2f3

f3

Pre-stream Post-stream Collision & 

Reversing

Bounce-back

ghost nodes

Figure 3.4 : 2D representation of the half way bounce-back method

29



3.2.2 Modified bounce-back
The implementation of the modified BB boundary condition is similar to the full-way

bounce-back method. It differs only in the sense that it includes collision operation at the wall
nodes during the process.

3.2.3 Free-Slip Boundary Condition
The boundary condition is also known as specular reflection. The boundary condition is

generally used to the situation of a smooth boundaries of zero friction. In the case of free-slip
boundary condition, the implementation is similar to that used in the full-way BB boundary
condition. However, instead of performing the complete reflection, the outgoing particle
distribution functions are reoriented via specular reflection as shown in Figure 3.5.

wall boundary

unknown fluid population 

f1

lattice points 

f2

f3 f4

f2

f3

f1

f4

wall boundary

Streaming

Figure 3.5 : 2D representation of the free-slip boundary condition before (left) and after (right)
streaming process.

The mathematical formulation for the scheme can be written as:

fk(⃗x, t +∆t) = f ¯̄k(⃗x, t +∆t) (3.155)

where, f ¯̄k is the specular reflection of the unknown fluid populations at the boundary nodes.

3.2.4 Immersed Boundary Method
The IB method can be described as a non-body conformal grid method for implementing

no-slip conditions at the boundary surface by adding a forcing term to the governing flow equation
either explicitly or implicitly. The concept behind the method is that the boundary nodes are
represented as Lagrangian markers independent of the mesh used in flow solver [Peng and
Luo, 2008] as shown in Figure 3.6. Additionally, the IB method needs interface schemes since
the boundary nodes generally do not correspond to the Eulerian grid nodes. The most popular
interface scheme for the IB method is the diffuse interface scheme. In the diffuse interface scheme,
the Lagrangian markers are located on the boundary surface at which the boundary force is
evaluated, and the Eulerian grid nodes represent the flow field. Hence, interpolation between
the Lagrangian markers and Eulerian nodes is required to interpolate the fluid velocity at the
neighboring Eulerian nodes on boundary nodes for calculating the force exerted by the flow on the
boundary surface and for the distribution of boundary force on the neighboring Eulerian nodes.
The distributed forces are added as an external force term in the governing fluid flow equations.

30



The governing LBE for the SRT-LBM in the presence of an external force, can be rewritten as [Kang
and Hassan, 2011]:

fk(⃗x+ e⃗k∆t, t +∆t) = fk(⃗x, t)−
1
τ
[ fk(⃗x, t)− f eq

k (⃗x, t)]+Fk(⃗x, t)∆t (3.156)

Eulerian Grid Point

Lagrangian Marker

Figure 3.6 : Illustration of immersed boundary method.

where Fk is the discrete force distribution function along direction k, that can be computed
with the given expression [Kang and Hassan, 2011]:

Fk(⃗x, t) =
(

1− 1
2τ

)
wk

[ e⃗k − u⃗(⃗x, t)
c2

s
+

e⃗k · u⃗(⃗x, t)
c4

s
e⃗k

]
·F(⃗x, t) (3.157)

Moreover, the following steps are used in the numerical calculations to solve the LBE with
a forcing term [Guo et al., 2002; Kang and Hassan, 2011].

• First-forcing step:

ρ (⃗x, t )⃗u(⃗x, t) = ∑
k

e⃗k fk(⃗x, t)+
∆t
2

F(⃗x, t) (3.158)

• Collision step:

f
′
k(⃗x, t) = fk(⃗x, t)−

1
τ
[ fk(⃗x, t)− f eq

k (⃗x, t)] (3.159)

• Second-forcing step:

f
′′
k (⃗x, t) = f

′
k(⃗x, t)+∆tFk(⃗x, t) (3.160)

• Streaming step:

fk(⃗x+ e⃗k∆t, t +∆t) = f
′′
k (⃗x, t) (3.161)

31



where f
′
k and f

′′
k are defined as the post-collision and post-forcing distribution functions,

respectively. However, the forcing term on the right hand side of Eq.(3.157) is the boundary
force distribution on the neighboring Eulerian nodes. This can be computed with the following
procedure:

i. Firstly, the unforced velocity U⃗u f
b at the boundary nodes x⃗b is obtained by interpolating the

unforced fluid velocity u⃗u f from the neighboring Eulerian nodes. This can be given as:

U⃗u f
b = ∑

i, j,k
u⃗u f

i jkD f (⃗xi jk − x⃗b)∆x∆y∆z (3.162)

where, D f is the cheap-clipped polynomial mapping function [Deen et al., 2004], x⃗ is the
position vector of the Eulerian fluid nodes, and x⃗b represent the position vector of the control
points on the boundary surface of the reactor components. The mathematical expression for
the cheap-clipped polynomial mapping function can be written as:

D f (⃗xi jk − x⃗b) = d
(

xi − xb

)
d
(

y j − yb

)
d
(

zk − zb

)
(3.163)

And,

d(xi − xb) =

{
15
16

[
(xi−xb)

5

n5 −2 (xi−xb)
2

n3 + 1
n

]
−n ≤ (xi − xb)≤+n

0, otherwise
(3.164)

ii. Then, the forces on the boundary nodes F⃗b are obtained using the expression given below:

F⃗b = 2ρ
U⃗b −U⃗u f

b
∆t

(3.165)

where U⃗b is the velocity vector on the lagrangian markers at boundary surface.

iii. Finally, forcing term F on the right-hand side of equation Eq.(3.157) for the distribution of the
boundary forces F⃗b on the neighboring Eulerian nodes can be computed as:

F = ∑
b

F⃗bD f (⃗xi jk − x⃗b)∆x (3.166)

3.3 GPU PROGRAMMING
3.3.1 Architecture Details of NVIDIA Tesla GP100 GPU

The simulations for the present thesis work have been carried out on a Tesla P100
accelerator of NVIDIA GP100 GPU card.

As shown in Figure 3.7, the NVIDIA GP100 architecture contains Graphical Processing
Clusters (GPCs), Texture Processing Clusters (TPCs), Streaming Multiprocessors (SMs), and
memory controllers. A complete GP100 ismade up of 6 GPCs, 30 TPCs, 60 Pascal SMs. It consists of
eight memory controllers of 512 bits each. (total of 4096 bits). Each GPC comprises five TPCs, each
of which includes two SMs. Each SM consists of 32 double-precision CUDA cores that is half of the
single-precision CUDA cores and four texture units as illustrated in Figure 3.8. A complete GP100
GPU features has 1920 double-precision CUDA cores (also 3840 single precision CUDA cores) and
240 texture units over 60 SMs. Eachmemory controller has 512 KB of L2 cache linked to it. Morever,
eachHBM2DRAM stack is managed by twomemory controllers. The entire GPU is comprised of a
total of 4096 KB of L2 cache. The Tesla P100 accelerator employs 56 SMs. For more details about the
architecture of the Tesla GP100 card, one can refer to NVIDIA [2016]. The technical specifications
of the NVIDIA Tesla GP100 GPU are given in Table 3.1.

32



GPC

GPC GPC

GPC

TPC TPC TPC TPC TPC

GPC

TPC TPC TPC TPC TPC

GPC

TPC TPC TPC TPC TPC

GPC GPC

GPC

TPC TPC TPC TPC TPC

GPC

GPC GPC

GPC

TPC TPC TPC TPC TPC

GPC

GPC GPC

GPC

TPC TPC TPC TPC TPC

GPC

C
o
n
tr
o
ll
e
r

Figure 3.7 : Architecture of Tesla GP100.

Figure 3.8 : Streaming Multiprocessor.

3.3.2 Structure of CUDA Programming
The CUDA programming model developed by NVIDIA has been used to develop the code

suitable for parallel computation on GPU architecture [Guide, 2013; Cheng et al., 2014]. The CUDA
programming model represents CPU architecture as a host unit and GPU architecture as a device
unit. CUDA programming model uses the kernel function for the execution of the program. The

33



Table 3.1 : NVIDIA Tesla GP100 specifications

GPU Architecture NVIDIA Pascal
NVIDIA CUDA Cores 3840

Memory Size 16 GB
Memory Bandwidth 732 GB/s

Double-Precision Performance 4.7 TeraFLOPS
Single-Precision Performance 9.3 TeraFLOPS
Half-Precision Performance 18.7 TeraFLOPS

kernel function in the CUDA programming model is a call function. It is called from the host (i.e.,
CPU) and runs on the device (i.e., GPU), as shown in Figure 3.9. It executes the complete domain
grid in the GPU, which has been divided into a large number of GPU blocks. Each GPU block
consists of a large number of threads for parallel computation.

Figure 3.9 : Illustration of CUDA programming model in 3D.

Moreover, as illustrated in Figure 3.9, the meaning of the following terminologies are:

• gridDim.x, gridDim.y, and gridDim.z are the in-built commands used to define the number of
blocks in the directions x, y, and z, respectively.

34



• blockDim.x, blockDim.y, and blockDim.z are the in-built commands used to provide block
dimension, which means the number of threads each block contains in the direction x, y,
and z, respectively.

• blockIdx.x, blockIdx.y, and blockIdx.z are the in-built commands that represents the block
index (ID) in the x, y, and z direction, respectively.

• threadIdx.x, threadIdx.y, and threadIdx.z are the in-built commands for defining threads ID in
each block in the x, y, and z direction, respectively.

The global thread ID in the particular direction can be calculated as:

• i = blockIdx.x * blockDim.x + threadIdx.x;

• j = blockIdx.y * blockDim.y + threadIdx.y;

• k = blockIdx.z * blockDim.z + threadIdx.z;

Furthermore, the block in the CUDA programming model runs parallel in different SMs,
and the threads in each block run directly into CUDA cores. The important thing to understand is
that the threads in each block can communicate with each other. However, threads in a different
block cannot communicate. The more details can be found in Guide [2013].

3.3.3 LBM implementation on GPU cluster
The step by step procedure for the implementation of LBM algorithm on GPU architecture

is given below:

• step 1: Allocate memory for the variables both on the host and device.

• step 2: Copy related variables from the host to device.

• step 3: Divide the domain into a combination of blocks and threads.

• step 4: Call the kernel function to perform different LBM operation, i.e, collision, streaming,
boundary condition and updation of macroscopic variables.

• step 5: After completion of the simulation, transfer desired output files from device to host.

3.4 SUMMARY
In summary, this chapter conclude with the detailed description of the governing

mathematical formulations of the popular SRT-LBM model for the different versions of 3D lattice
structures. It has been described that the SRT-LBMmodel includes steps of collision and streaming
in its expression. The LES turbulence model in the frame of LBM is described in detail, explaining
the filtered equation of SRT-LBM to model the turbulent flow, along with the Smagorinsky
SGS model to resolve the small-scale turbulent structures. The chapter provides the complete
derivation of the incorporation of LES turbulence model in the LBE. The chapter also includes the
description of the different types of boundary conditions in LBM, such as on-site velocity boundary
condition, bounce-back method, and immersed boundary method. Lastly, the chapter illustrates
the implementation of the LBM algorithm on the GPU platform.

35


