Certificate

This is to certify that the thesis titled A Multi Objective Beacon Placement Strategy for 3D Point Cloud Representation of Indoor Environments, submitted by Ravi Sharma (P14CS002) to the Indian Institute of Technology Jodhpur for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work done by him under my supervision. To the best of my knowledge, the contents of this report, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Roman<u>y</u> Dr. Venkataramana Badarla Ph.D.Thesis Supervisor

Declaration

I hereby declare that the work presented in this thesis entitled *A Multi Objective Beacon Placement Strategy for 3D Point Cloud Representation of Indoor Environments* submitted to the Indian Institute of Technology Jodhpur in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work carried out under the supervision of Dr. Venkataramana Badarla. The contents of this thesis in full or in parts, have not been submitted to, and will not be submitted by me to, any other Institute or University in India or abroad for the award of any degree or diploma.

Lani Sorma

Ravi Sharma P14CS002

Acknowledgment

First and foremost, I would like to thank my supervisor Dr. Venkataramana Badarla for giving me the opportunity, consideration and guidance during this journey. I extend my thanks to the institute staff Mr. Poonam Chand, Mr. Rimpesh and Mr. Dheerendra for their support in smooth processing of research. I can not thank more to my friends, Deepti (madam!), Divya, Jaspreet, Vipul, Himmat Singh, Surendra and Abhay for keeping me motivated through the ups and downs, both professionally and personally. I cherish the moments with all the other seniors, batch-mates and juniors, who were there when no one else was.

I would like to express my deep love to my family for the enhanced patience and support they carried towards my carrier during this time. I would especially like to thank my wife Akanksha for extending a shoulder to carry the responsibilities of life together during my PhD.

I pay my respect to my grandparents, without their blessings, I would never have gotten this far.

To wrap it with tie and bow, as said by the Lord Krishna himself:

अनन्याश्चिन्तयन्तो मां ये जनाः पर्युपासते | तेषां नित्याभियुक्तानां योगक्षेमं वहाम्यहम् ||

श्रीमद्भगवद्गीता (अध्याय ९, श्लोक २२)

Ravi Sharma

List of Figures

1.1	Limitations with Classical Positioning Technologies.	5
1.2	Categories of Positioning Methods with examples	6
1.3	An example representation of time synchronization between stations in ToA/ToF	
	methods. The times of signal transmission i.e. T_1, T_2, T_3 from reference stations	
	to target along with the speed of signal c is used to formulate the system of range	
	equations by calculating euclidean distances. This system is solved for target	
	coordinates by methods such as multi-lateration.	7
1.4	An example representation of methods involving Round Trip Time (RTT) calcu-	
	lation of packet transmission. A single clock at reference station minimizes the	
	effort in synchronization, though, the amount of packet processing at target must	
	be calculated/calibrated.	8
1.5	An example representation of TDoA method where difference in arrival times of	
	signals on reference stations from target is used to formulate range equations and	
	solved for target coordinates	9
1.6	An example representation of PoA/PDoA methods where the difference in phase	
	difference of the incident wavefronts on the antenna array of reference stations is	
	used to measure the location information.	10
1.7	The figure presents the research premise for this thesis. We restrict the scope	
	of our work for short range RSSI based Indoor Localization. Moreover, for its	
	Multi-Objective assessment, the contradicting objectives of total beacon count and	
	beacon density have been chosen. The resulting configurations were analysed for	
	resulting coverage and accuracy.	14
2.1	2D bird's eye/floor-plan view of a synthetic indoor environment	18
3.1	An example point cloud classification of an Indoor Environment	28
3.2	Variation of minimum total beacon count required for the respective variation of	
	k, DSD and BSD. The respective variations are presented for all the combinations	
	of DSD and BSD values, ranging from 0.1 to 1 with a step size of 0.1, with k value	
	of 3, 4 and 5 from top to bottom	34
3.3	Effect of varying R with k for Optimum Beacon Count $\ldots \ldots \ldots \ldots \ldots$	35
3.4	Variance in path loss in decibels against Beacon's Sensing Range (R) over differ-	
	ent wireless frequencies	36

3.5	Error propagation in range (δr) due to noise in path loss estimation (δP) for dif- ferent range values	37
4.1	2D depiction of LoS and Non-LoS situations from a beacon to surrounding devices	
	in the presence of obstacles.	40
4.2	An example representation of (a) CDL, (b) CBL and (c) OPC coordinates as sim-	
	ulated in MATLAB	42
4.3	Representation of clipped rectangular RoV between beacon-device LoS that clas-	
	sifies contained coordinates (grey) and invisible coordinates (blue)	43
4.4	Work flow of PCOC	45
4.5	Comparison of computational performance of proposed PCOC against voxel based	
	LoS detection technique.	47
4.6	Visual representation of PCOC output for single CDL	48
4.7	False LoS detection due to high OGS	48
4.8	False deprecation of LoS due to concave obstacle	49
4.9	A visual representation of the effect of satellite geometry over the resulting GDoP	
	via error propagation. An evenly spread satellite configuration (left) is preferred	
	over a congested arrangement (right).	50
5.1	A visual representation of pareto front resulting from the contradictory i.e. min- max optimization of two objective functions f_1, f_2 . The points circled green are inferior to no other candidate solutions with f_1 , f_2 taken collectively unlike the	
	solutions circled red. \ldots	54
5.2	A view of sample binary entries in the matrix ψ with row and column correspon-	
	dence to devices and beacons respectively	56
5.3	A view of sample binary entries in the matrix Λ with row and column correspon-	
	dence to devices and C_{qk} combinations respectively	56
5.4	Proposed Multi Objective Optimization Tool Chain (OTC)	58
5.5	Obstacle placement in two indoor designs as chosen for simulations	59
5.6	Non-dominant solutions with $R = 3$ for indoor design in Figure 5.5a	62
5.7	Non-dominant solutions with $R = 4$ for indoor design in Figure 5.5a	63
5.8	Non-dominant solutions with $R = 5$ for indoor design in Figure 5.5a	64
5.9	Non-dominant solutions with $R = 3$ for indoor design in Figure 5.5b	65
5.10	Non-dominant solutions with $R = 4$ for indoor design in Figure 5.5b	66
5.11	Non-dominant solutions with $R = 5$ for indoor design in Figure 5.5b	67
5.12	Accuracy (left) and coverage (right) performance of the beacon configurations	
	with GDoP tolerance 2, for design in Figure 5.5a	70
5.13	Accuracy (left) and coverage (right) performance of the beacon configurations	
	with GDoP tolerance 2, for design in Figure 5.5b	71

List of Tables

1.1	Comparative analysis of limitations in localization methods	12
2.1	A comparison of SOO and MOO approaches with respect to present work \ldots	26
5.1	Parameter selection for NSGA-II implementation	61
5.2	WLAN simulation parameters for Physical layer modelling	69
5.3	Parameter settings and performance of Rank-1 configurations	73