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2D-FFT based Modulation Classification

6.1 INTRODUCTION
In chapters 4 and 5, point density of SDP and constellation have been used as a key

feature and two DCNN models are used for classification. Both the classification models
provide significantly high classification accuracy with computation complexity. In this chapter,
the two-dimensional Fast Fourier Transform (2D-FFT) of constellation structure is used as a
classification feature. CDM is formed using the density spread of constellation points and a 2D-FFT
matrix is generated through the two-dimensional Fast Fourier Transform of CDM. A light and
efficient DCNN model is designed to classify the modulation schemes of different orders of PSK
and QAM. The developed method achieves adequate classification performance for considered
five modulation schemes in the AWGN channel [Kumar et al., 2020a].

6.2 DCNN-BASED CLASSIFIER
In this section, the developed classification strategy is described. The received complex

symbols are used to form a density matrix (DM) and transform into the frequency domain using
2D-FFT, which is used as a feature matrix for classification using DCNN. A light DCNN model
with concatenated convolution layers and residual connections is developed for classification.

6.2.1 Signal pre-processing and 2D-FFT matrix generation
Considering N number of constellation points are extracted from the baseband signal

waveform. Symbols available in the 4× 4 complex plane are normalized to zero mean and unity
variance. The selected area of the constellation plane is divided into 100× 100 grid sections and
the number of symbols in each grid section is calculated to form DM. 2D-FFT is performed to DM
generated using 100×100 grid.

For a given M×K dimensional DM u(m,k), 2D-FFT is given by

U(p,q) = F [u(m,k)] (6.1)

where F denotes Fourier Transform operator.

U(p,q) =
M−1

∑
m=0

K−1

∑
k=0

u(m,k)e− j2π(mp
M )e− j2π( kq

K ) (6.2)

for m = 0,1, ...,M−1 and k = 0,1, ...,K −1.

The transform kernel can be divided into two kernels since one summation depends on m
and p while another on k and q.
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U(p,q) =
M−1

∑
m=0

V (m,q)e− j2π(mp
M ) (6.3)

for p = 0,1, ...,M−1 and q = 0,1, ...,K −1. Where,

V (m,q) =
K−1

∑
k=0

u(m,k)e− j2π( kq
K ) (6.4)

for m = 0,1, ...,M−1 and q = 0,1, ...,K −1.

The above formulation is a decomposition of 2D-FFT into a row and column-wise 1D-DFT.
In this process, the first 1D-DFT is performed alongwith row and the results are transformed using
column-wise 1D-DFT (or vice versa).

6.2.2 DCNN architecture
A DCNN network is developed which extracts important features from the data without

manual intervention and provides good efficacy in classification problems. The layered
architecture of the proposed DCNN network is shown in Figure 6.1. The basic building
blocks of the network are the convolution layer (Conv1D), activation function, pooling layer
(AveragePool1D), and dense layer. It has been observed in deep networks, while backpropagation,
vanishing gradient problem occurs and the training process does not provide optimum weights.
To eliminate this issue, two residual shortcut connections are made across more conjunctive
convolution layers.

Consider input to the lth layer to be U l−1 and output of that layer is U l , U l ∈ RMl×Kl (here
Ml ×Kl represents dimension of lth layer i.e. M ×K). For l = 1, input is U0 with the dimension of
100×100. U0 is scaled to bring in the range (0,255). The input is also visualized as Ml number of
vector with the length of Kl . For lth layer processing, with input of vector length Kl−1 and output
of Ll requires Kl−1 ×Kl number of kernels. Output of the lth convolution layer can be given as

U l
i = h(

Kl−1

∑
j=1

U l−1
j ∗κ l

i, j +Bl
i) (6.5)

Here, h(a) = max(0,a) is rectified linear unit (ReLU) used for non-linear activation, κ is
kernel, B is bias, and ∗ represents convolution operator. Average pooling is used to downsample
the input vector with the factor of 2 by taking the average of conjunctive two values.

U l+1 = downsample(U l,2) (6.6)

where downsample(.) updates the dimension of output vector to Ml+1 = Ml/2. The first
residual short cut connection is introduced after three convolution layers keeping the output
dimensions of layer l + 1 and l + 4 to be equal for addition (Kl+1 = Kl+4). After completion of
convolution operation with cascaded convolution layers, activation, and average pooling, output
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Figure 6.1 : DCNN architecture.
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Figure 6.2 : Generation of 2D-FFT from DM of I-Q diagram.
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Figure 6.3 : 2D-FFT dataset generated from DM of (a) BPSK, (b) QPSK, (c) 8PSK, (d) 16QAM, and (e)
64QAM.
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2D data is flattened to a vector that contains significant feature values. This array vector of the
dimension of 768× 1 is connected with a dense layer of 32 neurons. Each neuron of the previous
layer is sharing information with each neuron of the dense layer, which makes the parameter
dimension to be (768×32). The output of lth dense layer can be described by

U l = h(W lU l−1 +bl) (6.7)

WhereW is weight matrix of size of (768×32), and b is bias vector of length 32. Similarly,
another dense layer of 5 neurons is connected to produce 5 output values corresponding to the
5 classes. The activation function in this layer is softmax, which provides the probability of each
class to be the classified output. For the input to softmax activation di, i ∈ (1,5), output probability
can be defined as

pi =
edi

5
∑
j=1

ed j

(6.8)

Random 25% dropout is introduced into the 32 neurons dense layer to provide
regularization and avoid the network to overfit with the training data.

6.2.3 Implementation and training
The classification process includes five modulation schemes BPSK, QPSK, 8PSK, 16QAM,

and 64QAM. All the complex base-band signals are generated with RadioML software. Received
complex symbols are mapped to the complex plane of dimension 4×4 as shown in Figure 6.2. This
dimension has been chosen to include most of the symbol points for the considered SNR range.
Mapped constellation points are used to generate DM of dimension 100×100. DM is transformed
into the frequency domain using 2D-FFT to extract the classification features which is shown in
Figure 6.2. The generated 2D-FFT matrices for all five considered modulation schemes are shown
in Figure 6.3, which are directly given to the developed DCNN for training. The network has
trained for 50 epochs with the data shuffled by random state-2. The best-trained model weights
are saved during the training procedure. The complete dataset is divided into small batches of size
Nb (considered batch size is 64) and the model is trained batch-wise. Considered loss function for
training procedure is categorical cross-entropy given as

L =− 1
Nb

Nb

∑
i=1

yi log pi (6.9)

Where yi is the ground truth of the output class, pi is the output of the softmax activation
function, and L is the cumulative loss value for all batches. Model weights are updated using
stochastic gradient descent (SGD) algorithm with an adaptive learning rate to minimize the loss
value. Adam optimizer is used to adapt the learning rate for the fast learning process.

For the training process 250 signals are generated at each SNR. Between 0 dB and 20 dB
SNR, step size of 1 dB, and between 25 dB and 50 dB SNR step size of 5 dB is considered. The
size for the training dataset is 33750, out of which 20% (i.e. 6750) signals are used for validation.
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Figure 6.4 : (a) Accuracy of the developed method with SNR for all five modulation schemes. (b)
Performance comparison of the model with signal length. (c) Classification performance
of the model with phase offset. BPSK, QPSK, and 8PSK modulation schemes are tested at
5 dB SNR and 16QAM, and 64QAM are tested at 20 dB SNR.
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DCNN model is implemented in python with Keras, and NVIDIA DGX-2 GPU has been used to
train the model. Parameters of the solver configuration have been adjusted for better classification
and a faster training process.
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Figure 6.5 : Confusionmatrix of proposedDCNNmodel for all five classes. Each class is testedwith 1000
signal realization for a range of SNR (0, 16) dB.
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Figure 6.6 : Comparison of proposed method with naive-based and SVM classifiers.

6.3 SIMULATION RESULTS
In this section performance of the DCNN model for the classification of five modulation

schemes in the AWGN channel is shown. Classification accuracy for each modulation scheme
with SNR is shown in Figure 6.4(a). Accuracy results are obtained for 1000 signal realization, with
each signal containing 2048 symbols. Figure 6.4(b) shows the average classification accuracy of
the proposed model with signal length. As shown in Figure 6.4(a), the classification accuracy of
the model for BPSK, QPSK, and 8PSK are adequate in comparison to 16QAM and 64QAM. Three
modulation schemes viz. BPSK, QPSK, and 8PSK are classified with 100% accuracy at 5 dB SNR
while for 16QAMand 64QAM, 11 dB and 16 dB SNR are required for reliable results. The reason for
the higher SNR requirement for 16QAM, and 64QAM is the confusion between each other shown
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in a confusion matrix given in Figure 6.5.

The performance of the DCNN model has been tested with the phase offset for practical
channel conditions. In Figure 6.4(c), the average classification accuracy with varying phase offset
is shown for all five modulation schemes. Results of classification accuracy with phase offset for
BPSK, QPSK, 8PSK are given at 5dB SNRwhile for 16QAM, and 64QAM, 20dB SNR is considered.

6.4 COMPARISONWITH EXISTINGWORK
In this section performance comparison of the developedmethod has been done with some

of the existing work in literature. In [Wang et al., 2020a], authors have developed a modulation
classification method for varying SNR values by training the model with the signals from a
range of SNR values. For a set of modulation schemes Θ1 = {BPSK,QPSK,8PSK}, classification
accuracy comparison of their method generalized modulation signal classification (GMSC) and
proposed method is shown in Figure 6.6. Comparison with another method, fixed modulation
signal classification (FMSC) is given in Figure 6.6. The performance of the proposed method is
better than both the above-mentioned works. We have also compared the developed method with
these two methods for another set of modulation schemes Θ2 = {BPSK,QPSK,8PSK,16QAM} and
shown the better classification results.

In [Aslam et al., 2012], the authors have used genetic programming (GP) for feature
optimization, and classification has been done using k-nearest neighbor (KNN). The considered
modulation set taken is Θ2. For the same set of modulation schemes, we have compared the
classification results in the AWGN environment. Figure 6.6 shows the better performance of the
proposedmethod over the GP-KNNmethod for all values of the SNR range. In [Wong et al., 2008],
authors have considered higher-order statistical features and classification has been done using
naive-based, SVN, and maximum likelihood (ML) modulation classifier (MC). For same set of
modulation schemes Θ3 = {BPSK,QPSK,16QAM,64QAM} and SNR range (10, 20) dB, performance
comparison of the proposed method with naive-based, SVM, and ML MC is done in TABLE 6.1.

Table 6.1 : Comparison between different classifiers given in [Wong et al., 2008] and proposed work for
Θ3 modulation set

SNR (dB) Naive SVM MLMC Proposed
10 97.67 97.59 75 98.3
12 98.69 98.55 75 99.05
14 99.43 99.04 98.53 99.4
16 99.42 99.26 100 100
18 99.4 99.36 100 100
20 99.66 99.4 100 100

…
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