Declaration

I hereby declare that the work presented in this thesis titled *Automatic Modulation Classification using Deep Learning Techniques* submitted to Indian Institute of Technology Jodhpur in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work carried out under the supervision of Dr. Sandeep Kumar Yadav. The contents of this thesis in full or in parts, have not been submitted to, and will not be submitted by me to any other Institute or University in India or abroad for the award of any degree or diploma.

Yogesh Kumar P15EE202

Certificate

This is to certify that the thesis titled *Automatic Modulation Classification using Deep Learning Techniques*, submitted by *Yogesh Kumar (P15EE202)* to Indian Institute of Technology Jodhpur for the award of the degree of *Doctor of Philosophy*, is a bonafide record of the research work done by him under my supervision. To the best of my knowledge, the contents of this report, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Sandeep Kumar Yadav Ph.D.Thesis Supervisor

Acknowledgments

I thank my Ph.D. Thesis Supervisor, *Dr. Sandeep Kumar Yadav*, for introducing me to the area of signal processing and communication systems. Within the procedure, I found out many technical and non-technical elements of professional paintings. I am grateful to him for his *assist* and *endurance* as well as for constantly reminding me to be best within the little matters that I do every day.

I thank *Dr. Abhay Samant, Mr. Raghunandan* and *Mr. Varun* from National Instruments for introducing me to the hardware of wireless system which helped me to apprehend the ideas in a better way. I thank *Mr. Ashok Kumar, Mr. Gaurav Jajoo,* and *Mr. Manu Sheoran* for having fruitful technical discussions on numerous subjects at some stage in my stay at IITJ.

My stay at the Institute become a splendid experience because of my buddies, *Gaurav*, *Amit*, *Amrik*, *Gajendra*, *Mahmood*, *Surbhi*, *Manpreet*, and *Kanika*, for all the liveliness they infused into the non-academic part of the days at IIT Jodhpur...

Finally, I want to thank my spouse, *Anita* from the bottom of my heart for helping me to complete this adventure. She helped by watching our daughter *Navya* after I had to do work on my studies or to be on campus. She has been with me from the begin to the finish of my Ph.D. research and she will enjoy with me the culmination of this labor now that it's complete. I acknowledge and thank my *whole* circle of relatives, for the persistence and love which they ushered on me, and for bearing with me even when I was not spending much less time with them. I pay respects to my *mother and father* for all their *love, sacrifices and blessings*...

List of Figures

Figures	Title	page
1.1	Military application of AMC	1
1.2	Link Adaptation	2
1.3	Opportunistic spectrum utilization	3
2.1	Spectral feature based classification strategy	12
3.1	Effect of carrier frequency offset on constellation	16
3.2	Graph of $R(f)$ for CFO of 60kHz	16
3.3	Symbol rate estimation	17
3.4	Proposed Modulation Classification Algorithm	17
3.5	Linear regression at 7dB SNR in (a) 4ASK and (b) 8PSK	18
3.6	Circle fitting at 7dB SNR in (a) 8PSK and (b) 8QAM	20
4.1	Block diagram of complete system.	24
4.2	SDP for sine wave at frequency of 100 Hz. (a) Effect of variation in ${\mathscr L}$ on SDP image for	
	\mathscr{G} =30. (b) Effect of variation in \mathscr{G} on SDP image for \mathscr{L} =15.	25
4.3	Formation of color image using ALPLT method.	26
4.4	SDP color images for all nine modulation schemes at 5dB and 15 dB SNR for particular	
	$(\mathscr{L},\mathscr{G})$ value.	27
4.5	Estimation of optimum value of \mathscr{G} by maximizing natural and actual statistical difference	
	between two classes.	28
4.6	Residual block structure.	29
4.7	DCNN model architecture. The first part of the Figure is the ResNet-50 [He et al., 2016]	
	model used for the extraction of basic features. Each Conv Block and Identity Block	
	has formed a bottleneck structure to reduce computational complexity. The second	
	part is a fully connected network, which takes an array of 1000 outputs from the	
	pre-defined ResNet-50 model to extract significant features.	31
4.8	Structure of (a) Conv. Block [He et al., 2016] (b) Identity Block [He et al., 2016].	32
4.9	(a) Comparison of multiplications required in the bottleneck structure of Conv. Block	
	and equivalent plain network. (b) Comparison of multiplications required in bottleneck	
	structure of Identity Block and equivalent plain network.	32
4.10	Inception ResNet V2 architecture [Szegedy et al., 2016].	34
/ 11	Building blocks of Incention ResNet V2 [Szegedy et al. 2016] (a) Stem (b) Reduction A	01
4	and (c) Reduction B	34
/ 17	(a) General schema for Incention ResNet blocks [Szegedy et al. 2016] and (b)	01
7.12	Incention A block [Szegedy et al. 2016]	35
1 12	Building blocks of Incention ResNet V2 [Szegedy <i>et al.</i> 2016] (2) Incention ResNet A	00
4.15	(b) Inception ResNet B and (c) Inception ResNet (35
4 1 4	Hierarchy followed for modulation classification	36
4•14 1 15	Accuracy versus SNR graph of $2\Delta SK = A\Delta SK$ and $8\Delta SK$ for $PacNat_{CO}(Pac)$ and $Pacontion$	50
4.12	Received versus sin graph of 2030, 4030 and 0030 for respector (respand inception	20
A 46	Accuracy vorcus SND graph of ODSK 20SK and 460AM for Dechlotics (Dec) and	58
4.10	Incontion Pachlat Va (Inc) models	20
	ווכבףנוטו הבאיפר עב (ווכ) ווטעפוז.	58

4.17	Accuracy versus SNR graph of 2FSK, 4FSK and MSK for ResNet-50 (Res) and Inception	•
•	ResNet V2 (Inc) models.	39
4.18	Average classification accuracy of QPSK and 16QAM.	39
4.19	Comparison of average classification accuracy of proposed methods with CNN1 and CNN2.	40
4.20	Comparison of average classification accuracy of proposed methods with CNN-AMC	11
	and traditional AMC methods.	41
5.1	A three-stage modulation classification procedure for eight modulation schemes with	
-	masking filters is shown. First stage : (a) Constellation of all modulation schemes are	
	filtered through F_1 and classified into three groups. Second stage : (b) Constellation	
	of 2ASK and 4ASK are filtered through F_2 and classified, (c) Constellation of QPSK	
	and 8PSK are filtered through F_3 and classified, (d) Constellation of 8QAM, 16QAM,	
	32QAM and 64QAM are filtered through F_4 and classified into two groups. Third	
	stage : (e) Constellation of 8QAM and 16QAM are filtered through F_5 and classified,	
	(f) Constellation of 32QAM and 64QAM are filtered through F_6 and classified. (g)	
	Description of the working procedure of all five filters. Functional architecture of (h)	
	ResNet-50 Residual Block, and (i) Inception Residual Block.	44
5.2	Accuracy of developed method with (a) ResNet-50 and (b) Inception ResNet V2 for	
	eight modulation schemes. (c) Proposed method comparison with GP-KNN in AWGN,	
	ML classifier with parameter estimated by SQUAREM-PC in GMM (N=2) and one sample	
	2D K-S classifier with parameter estimated by ECM in GMM (N=2) for 2ASK, QPSK, 6PSK,	
	with and without macking filters for ResNetse and Incention ResNet Va	16
	with and without masking litters for ResNet50 and inception ResNet V2.	40
6.1	DCNN architecture.	51
6.2	Generation of 2D-FFT from DM of I-Q diagram.	52
6.3	2D-FFT dataset generated from DM of (a) BPSK, (b) QPSK, (c) 8PSK, (d) 16QAM, and (e) 64QAM.	52
6.4	(a) Accuracy of the developed method with SNR for all five modulation schemes.	
	(b) Performance comparison of the model with signal length. (c) Classification	
	performance of the model with phase offset. BPSK, QPSK, and 8PSK modulation	۲.
<u> </u>	schemes are tested at 5 dB SNR and 16QAM, and 64QAM are tested at 20 dB SNR.	54
6.5	Confusion matrix of proposed DCNN model for all five classes. Each class is tested with	EE
6.6	Comparison of proposed method with paive based and SVM classifiers	55
0.0	comparison of proposed method with haive-based and svin classifiers.	55
7.1	System model	57
7.2	Modulation classification approach.	59
7.3	Parallel processing of algorithm for four ranges of symbol rate.	62
7.4	FPGA implementation of modulation classification approach.	63
7.5	Optimization of α (Graph shows maximum accuracy at α =0.5).	65
7.6	Accuracy versus SNR for 5k-10k symbol rate range and f_s =10M.	65
7.7	Accuracy versus SNR for 10k-15k symbol rate range and f_s =15M.	66
7.8	Accuracy versus SNR for 15k-20k symbol rate range and f_s =30M.	66
7.9	Accuracy versus SNK for 20K-25K symbol rate range and f_s =40M.	67
/.10	Accuracy versus CFO for tok 5k-10k symbol rate range and f_s =10M.	67
/.11	Accuracy versus CFO for 15k-15k symbol rate range and f_{-20} M	00 60
7.12	Accuracy versus CEO for ack-ack symbol rate range and $f = 40M$	00 60
7.13	Accuracy versus of 0 for zok-zok symbol rate range and J_s =4000.	09

List of Tables

Figures	Title	page
3.1	Confusion matrix for ASK (7dB)	20
3.2	Confusion matrix for PSK (7dB)	20
3.3	Confusion matrix for QAM (7dB)	21
4.1	Candidate modulation schemes considered for classification.	25
4.2	Dataset and system parameters used for DCNN training	37
4.3	Comparison of results with existing methods	40
4.4	Comparison of results with GP-KNN	41
5.1	Fiters specifications	48
6.1	Comparison between different classifiers given in [Wong <i>et al.</i> , 2008] and proposed work for Θ_3 modulation set	56

List of Symbols

Symbol	Description
Δp	Oversampling factor resolution
Ymax	Maximum value of the spectral power density of the normalized and centered
6	instantaneous amplitude Standard doviation of the absolute value of the non-linear component of the
0 _{ap}	instantaneous phase
σ_{dp}	Standard deviation of the non-linear component of the direct instantaneous
S	phase Evaluation of the spectrum symmetry around the carrier frequency
σ_{aa}	Standard deviation of the absolute value of the normalized and centerd
	instantaneous amplitude of the signal samples
σ_{af}	Instantaneous frequency
σ_a	Instantaneous amplitude Kurtosis of the normalized and contored instantaneous amplitude
μ_{42} r	Received complex baseband signal
μ_{42}^f	Kurtosis of the normalized and centered instantaneous frequency
$R_r^{lpha}(au)$	Cyclic autocorrelation
$S_r(f)$	Spectral correlation function
S m	Transmitted complex baseband signal
η	Correlation coefficient
$\rho_{\Delta\phi}$	Phase offset
$\hat{\alpha}^{\psi}$	Fading channel attenuation
£	Likelihood function
N	Number of symbols
Δf	Carrier frequency offset
p < . >	Modulation set
\tilde{f}'_{c}	Estimated carrier frequency
f_s	Sampling frequency
ÔS	Oversampling factor
r_R	Passband received signal
f_{c}	Carrier frequency
f'	Estimated frequency
\mathcal{A}_{S}	Sample delay in SDP formation
L G	Amplification factor in SDP formation
d(i, j)	Density of points in (i, j) th grid section
I(i, j)	Intensity of $(i, j)^{th}$ pixel
Ŧ	Fast Fourier Transform
E L	Constellation error
I_i M	Modulation order
ΔT	Symbol time offset

List of Abbreviations

Abbreviation	Full form
2D-FFT ALPLT ALRT AMC ANN ASK AWGN	Two-Dimensional Fast Fourier Transform Adaptive Local Power Law Transform Average Likelihood Ratio Test Automatic Modulation Classification Artificial Neural networks Amplitude Shift Keying Additive White Gaussian Noise Constellation Density Matrix
CF	Carrier Frequency
CFO	Carrier Frequency Offset
CNN	Convolution Neural Network
CR	Cognitive Radio
CSI	Channel State Information
CSV	Comma Separated Values
DCNN	Deep Convolution Neural Network
DFT	Discrete Fourier Transform
DL	Deep Learning
FB	Feature Based
FFT	Fast Fourier Transform
FIFO	First In First Out
FPGA	Field-Programmable Gate Array
FSK	Frequency Shift Keying
GLRT	Generalized Likelihood Ratio Test
GMM	Gaussian Mixture Model
GP-KNN	Genetic Programming- k Nearest Neibour
GPU	Graphics Processing Unit
HLRT	Hybrid Likelihood Ratio Test
HOC	Higher Order Cumulants
IID K S	Independent and Identically Distributed
K-S LB	Likelihood Based
MFCC	Mel-frequency Cepstral Coefficients
ML	Machine Learning
MSE	Mean Square Error
MSK	Minimum Shift Keying
NI	National Instrument
NLP	Natural Language Processing
OP	Optimum Parameters
OS	Over Sampling
PDF	Probability Density Function
PO	Phase Offset
PSK	Phase Shift Keying
PU	Primary User
QAM	Quadrature Amplitude Modulation
ReLU	Rectified Linear Unit
RF	Radio Frequency
RRC	Root Raised Cosine
SCF	Spectral Correlation Function
SD	Standard Deviation

Abbreviation	Full form
SDP	Symmetric Dot Pattern
SDR SNR	Software Defined Radio Signal to Noise Ratio
SR	Symbol Rate
STO	Symbol Time Offset
SU	Secondary User
SVM	Support Vector Machine
VHDL VI	Very High Speed Integrated Circuit Hardware Description Language Virtual Instrument