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Symmetric Dot Pattern based Modulation Classification

4.1 INTRODUCTION
In chapter 3, an analytic approach for modulation classification has been explained which

has less complexity but also havemarginal classification efficiency. Now a days, we have sufficient
resources to execute highly complex algorithms to improve the classification efficiency. In this
chapter, modulation classification based on the Symmetric Dot Pattern (SDP) representation of
Radio Frequency (RF) signal is explained. Snowflake images generated by the SDP technique are
used to train the Deep Convolution Neural Network (DCNN). DCNN had great success in the
domain of modulation classification due to its capability to classify highly noisy images. It is well
suited in the communication domain due to the easy availability of large datasets. DCNN has an
advantage over conventional Machine learning (ML)methods in sense of feature selection. DCNN
chooses features autonomously while ML methods select features manually. In this chapter, two
DCNN models viz. ResNet-50 and Inception ResNet V2, both concatenated by 8 fully connected
layers are implemented and trained using data generated through LabVIEW. The density of
points in the SDP pattern is used to generate a grayscale image. The Adaptive Local Power Law
Transform (ALPLT) method has been used for color image generation through a grayscale image.
A hierarchical model of eight stages with each stage doing a binary classification using DCNN is
formed. All modulation schemes considered are classified accurately above 9 dB SNR.

4.2 SYSTEMMODEL
In this chapter, it is assumed that the receiver has the information of carrier frequency ( fc)

and symbol rate (Rs) has been calculated using the method defined in [Jajoo et al., 2017]. The flow
chart of the proposedmethod is given in Figure 4.1. The received RF signal is downconverted to an
intermediate frequency ( f ′ = β ×Rs ; β is a constant and considered to be 10). The downconverted
signal is used to generate SDPdensity formatwhich is transformed into a gray-scale image. ALPLT
method is used to create three channels (RGB) for color image generation. A set of hierarchical
decision units are employed for classification, each of which contains a DCNNmodel trained with
the SDP color images. Every decision unit has a binary classifier equipped with ResNet-50 or
Inception ResNet V2 based DCNN model. Optimum values of SDP parameters are estimated at
each binary classifier unit for SDP formation bymaximization of the SDP density difference of two
classes.

4.3 SYMMETRIC DOT PATTERN
Symmetric Dot Pattern transforms the time-domain signal into a polar domain pattern to

make it more expressive in visual perception. SDP is mainly used for the detection of variation
in amplitude and frequency, which is satisfied in communication signals. The produced dot
pattern has a shape similar to symmetrical snowflakes. The shape of the SDP image is unique
for a particular modulation scheme, which has been used as a feature for the classification of
communication signals .
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Figure 4.1 : Block diagram of complete system.

4.3.1 SDP formation
In the sampled sequence of the received signal, amplitude of the sample at time i is

considered as rd(i) and the amplitude at time i + L is rd(i + L ). By using these values in
Equations (4.1), 4.2, and 4.3, the sample sequence is transformed into a polar coordinate system
P(κ,Ψ). For one sample rd(i), twopoints aremapped at position (κ(i),Ψ(i)) and (κ(i),Ψ′(i)), where
κ(i) is the radius of the polar coordinates, Ψ(i) and Ψ′(i) are counterclockwise and clockwise angle
of point, respectively.

κ(i) =
rd(i)− rd,min

rd,max − rd,min
(4.1)

Ψ(i) = Ψ0 +
rd(i+L )− rd,min

rd,max − rd,min
G (4.2)

Ψ′(i) = Ψ0 −
rd(i+L )− rd,min

rd,max − rd,min
G (4.3)

where, rd,max and rd,min are themaximum and theminimum amplitude of the rd signal. L is
the time delay between two consecutive data samples,Ψ0 depicts the angle for the line of symmetry
for two symmetrical snowflakes, and G is the amplification factor.

For one signal rd(i),Ψ(i) andΨ′(i) composedly creates two symmetrical snowflakes around
the line of symmetry at an angle Ψ0. SDP image of a sine wave for 100 Hz frequency, and the effect
of variation in L and G on the SDP image is shown in Figure 4.2. Figure 4.2(a) shows the effect
of varying L on SDP pattern for G=30, and Figure 4.2(b) shows the effect of varying G on SDP
pattern for L =15.
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(a) G=30 (b) L=15

Figure 4.2 : SDP for sine wave at frequency of 100 Hz. (a) Effect of variation in L on SDP image for
G =30. (b) Effect of variation in G on SDP image for L =15.

Table 4.1 : Candidate modulation schemes considered for classification.

Domain Modulation Schemes
Phase-based modulations QPSK, 8PSK

Phase and amplitude-based modulations 16QAM
Amplitude-based modulations 2ASK, 4ASK, 8ASK
Frequency-based modulations 2FSK, 4FSK, MSK

4.3.2 Gray-scale image formation
The received RF time-series signal is downconverted at f ′ frequency and processed using

the SDP technique to build an SDPdensity structure in theComma-SeparatedValues (CSV) format.
SDP CSV files for all modulation schemes are generated using Equations (4.1), (4.2), and (4.3). The
value ofκ for any pointmapped on a complex plane lies between 0 to 1 and the overall SDP pattern
has a dimension of 2× 2. The considered CNN models require a three-channel image with each
channel dimension of 224×224. The SDP pattern is divided into 224×224 grid sections considering
each section as a pixel and the number of points in each grid section is termed as pixel density. The
pixel density in 224×224 dimensions is scaled in the range [0,255] and a gray-scale image is formed.

4.3.3 Color image generation using ALPLT
Most of the deep learning models require three-channel images for classification. The

formed grayscale image is converted in three channels usingAdaptive Local Power LawTransform
(ALPLT) as shown in Figure 4.3. Equation (4.4), (4.5) and (4.6) are used for generation of three
channels of the color image with ρ=1.7, ρ=2.2 and ρ=2.7, respectively. The ρ values are chosen
which are appreciated by numerical analysis in [Tsai, 2013]. The pixel density of the three channels
has different values which are combined for color image generation.
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Figure 4.3 : Formation of color image using ALPLT method.

I(i, j) = 255
(

d(i, j)
255

)λ
(4.4)

λ =

(
1
ρ

)( 128−µ(i, j)
128

)
(4.5)

µ(i, j) =
1
9

1
9

i+1

∑
k=i−1

j+1

∑
l = j−1

(k ̸= i)&(l ̸= j)

d(k, l)+d(i, j)

 (4.6)

Here d(i, j) and I(i, j) represent pixel density of gray-scale image and the intensity value of
one of the channels of a color image, respectively.

In the sameway data of all the consideredmodulation schemes have been generated. Color
images of all modulations at 5 dB and 15 dB SNR for particular L and G are shown in Figure 4.4.

4.3.4 Selection of parameters (Ψ0, L , G )
In the polar coordinate system, the selection of parameters Ψ0, L , and G decides the

orientation and shape of the snowflakes. The considered four values of Ψ0 are 0◦, 90◦, 180◦, and
270◦ which creates four pairs of snowflakes. If the difference between two adjacent Ψ0 values is
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Figure 4.4 : SDP color images for all nine modulation schemes at 5dB and 15 dB SNR for particular (L ,
G ) value.

small, the overlapping of snowflakes increases, which creates a disturbance in the identification
of the pattern. The shape of the image depends on L and G . L gives a correlation between the
points of time series and G increases the angular width of each leaf of the polar plot. The optimum
value of L and G improves the resolution of the image, which helps in signal classification. The
values ofL and G can vary from 1 to 20 and 1◦ to 90◦, respectively. The estimation of the optimum
value of L and G is discussed in the next section.

4.3.5 OptimumL and G estimation (Lopt , Gopt)
Lopt and Gopt are obtained by using the method explained in Algorithm 1. Ideal signal’s

SDP of two classes are generated for a range of values of L and G . Matrix of m×n, SD(L ,G ) is
formed by taking the sum of difference between pixel densities of two classes for every value of
L and G . For selection of Lopt , max(SD(L ,G )) function is used, which has two output vectors:
value and index. value is a row vector containing the maximum value of each column, and index
vector holds indices of rows containing those maximum values from each particular column. The
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Figure 4.5 : Estimation of optimum value of G by maximizing natural and actual statistical difference
between two classes.

mode value of index vector is taken as Lopt . Once Lopt is selected, row vector of SD(Lopt ,G ) is
used for selection of Gopt . Value of G for which SD(Lopt ,G ) shows maximum deviation from its
general characteristics (line joining initial and final value of SD(Lopt ,G )) is chosen as Gopt . Sp

D shows
projected values from general characteristics and Sa

D have the actual value of SD(L ,G ) as shown
in Figure 4.5. The maximum considered values for L and G are m=20 and n=90 respectively.

Algorithm 1: Lopt and Gopt Estimation.
Input : dclass1(L ,G ),dclass2(L ,G )
Out put : Lopt ,Gopt

for L = 1 : m do
for G = 1 : n do

D(L ,G ) = |dclass1(L ,G )−dclass2(L ,G )|
SD(L ,G ) = Sum[D(L ,G )]

end for
end for
[value, index] = max(SD(L ,G ))
Lopt = mode(index)
Sp

D[Lopt ,G ] = Sa
D[Lopt ,G (1)]+ Sa

D[Lopt ,G (90)]−Sa
D[Lopt ,G (1)]

G (90)−G (1) [G −G (1)]
Gopt = arg(max

∀G
(Sa

D[Lopt ,G ]−Sp
D[Lopt ,G ]))

4.4MODEL ARCHITECTURES OF CLASSIFICATIONMETHODS
A significant amount of work has been done using deep learning models for modulation

classification [Peng et al., 2018; Hiremath et al., 2019; Zhang et al., 2019]. The scope of performance
improvement in classification using DCNN is still available and researchers are working towards
optimization of architecture design. In the field of image processing, a large-scale image
classification problem is solved with improved performance by incorporating more layers in deep
network [He et al., 2016]. In this work, ResNet-50 and Inception ResNet V2 models are used to
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Figure 4.6 : Residual block structure.

build a modulation classifier. There are two types of problems in deep networks [He et al., 2016].
One is accuracy saturation, which increases training and testing errors and the second is vanishing
gradient, which affects the update of earlier layers parameters of the network. The vanishing
gradient problem is handled by choosing the initial parameters of the model carefully and batch
normalization before giving input to hidden layers. Accuracy saturation and gradient vanishing
are addressed by employing residual blocks in deep networks. A shortcut connection is introduced
and network layers are reformulated with a new residual function concerning the layer inputs.

4.4.1 Deep residual network
A residual block is a combination of the main path, consisting of some stacked nonlinear

layers, and a shortcut path. A deep network is formed with multiple residual blocks. The residual
block structure is shown in Figure 4.6. Consider that, each residual block is approximated by
mapping of a function H(x), where x is input to the function. For lth layer having input and output
Al−1 and Al , the function relation between these two is given by

Al = H(Al−1) (4.7)

In the main path, rather than directly mapping the function H(x), we approximated the
residual mapping by function F(x) = H(x)− x. Extraction of the actual function can be done by
using relation H(x) = F(x)+ x. So from (4.7),

Al = F(Al−1)+Al−1. (4.8)

In most cases, it is difficult to approximate the identity function using an array of nonlinear
layers, which causes performance degradation. This has been resolved by residualmapping simply
by making all the parameters of the main path to zero and the identity function is implemented
by a shortcut path. In the proposed work, residual mapping has been done by using two types of
blocks, one is convolution block (Conv_Block) and another is the identity block (Identity_Block)
as shown in Figure 4.8(a) and 4.8(b). The main path of both the blocks contains two 1×1 and one
3×3 convolutions, three batch normalization, and three Rectified Linear Unit (ReLU) activation
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layers. The shortcut path of the convolution block contains one 1×1 convolution and one batch
normalization layer, whereas the identity block is directly passing the input.

From Equation (4.8), it is shown that learning of the residual block is done by element-wise
addition of output of the main path and shortcut path, which is only possible for equal dimension
data. The dimension of the shortcut path needs to be equal to the dimension of the main path for
element-wise addition, which is done by linear projection [He et al., 2016] as given by

Al = F(Al−1)+WsAl−1 (4.9)

Here,Ws is a linear projection matrix.

4.4.2 ResNet-50
The ResNet-50 model is shown in Figure 4.7. It comprises of two parts. The first is a

pre-defined ResNet-50 model and the second consists of eight fully connected layers. ResNet-50
is a well-defined model, mostly used for image classification. The ResNet-50 model is a stacked
configuration of convolution, batch normalization, activation, padding, and pooling layers. The
convolution layer learns local features of the input image with a lower number of parameters
as compared to the fully connected layer. Details of the complete model are given in further
subsections. In the second part, a network of eight fully connected layers is concatenated to the
output of the pre-defined ResNet-50 for extraction of the significant features.

Layer details
The proposed deep residual network, shown in Figure 4.7 contains 4 Conv_Block and

12 Identity_Block. The operational flow graph of Conv_Block and Identity_Block is shown in
Figure 4.8. Each Conv_Block consists of 4 convolution layers, where two filters of size 1×1 and one
of 3×3 in the main path are engaged to make a bottleneck structure to reduce the computational
burden. The first 1×1 filter reduces the data dimensions by reducing the number of channels
and the second increases it to the required dimensions by increasing the number of channels,
whereas the 3×3 filter behaves as a bottleneck of the Conv_Block and Identity_Block. Due to the
nonlinear behavior of the activation function, the implementation of an identity function is difficult.
Identity_Block has been employed to overcome this problem. During training, the identity
function is created by assigning the zero value to the main path parameters of Identity_Block, and
the shortcut path serves the purpose. Comparison of computation cost of one Conv_Block using
bottleneck structure and the plain network is shown in Figure 4.9(a) and similarly, the computation
cost of Identity_Block using bottleneck and the plain network is shown in Figure 4.9(b). To convert
56×56×256 data into 28×28×512, bottleneck structure and plain network requires 295,436,288
and 1,849,688,064 multiplications respectively. Similarly, Identity_Block requires 192,675,840 and
2,066,448,384 multiplications in bottleneck structure and plain network respectively to convert
28×28×256 into 28×28×512. The same type of processing is done through all residual blocks and
the output of the ResNet-50 network is flatten to 1000 values to give input to the fully connected
network.

Pooling
For a fixed area of the image, one representative is chosen by taking mean or max. The

pooling of features is needed to reduce the distortion effect along with computational complexity.
In the proposedResNet-50model, after the first convolution layer of 7×7 filter, max-pooling is done
to extract significant features. The maximum value is chosen in each 3×3 matrices with the stride
of 2. A stride is a step size by which the filter moves in one direction. After the last convolution
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Figure 4.7 : DCNNmodel architecture. Thefirst part of the Figure is theResNet-50 [He et al., 2016]model
used for the extraction of basic features. Each Conv_Block and Identity_Block has formed
a bottleneck structure to reduce computational complexity. The second part is a fully
connected network, which takes an array of 1000 outputs from the pre-defined ResNet-50
model to extract significant features.

operation, average pooling is done as all the features are equally important for decision.

Batch normalization
Usually, network training is complicated due to the change in nature of the distribution

of the current layer’s input during training, as parameters of the previous layer change. A wide
range of input to the activation function and a lower value of learning rate cause a slower training
process. To overcome this situation, batch normalization has been taken into account. The input
data to a layer is first normalized in mini-batches and then scaled and shifted before activation.
Training data to the deep network is given in mini-batches of size N. Input mini-batch to each
hidden layer before activation is normalized using equations as given below.

µ =
1
N

N

∑
i=1

Z(i) (4.10)

σ2 =
1
N

N

∑
i=1

(Z(i)−µ)
2

(4.11)

Z(i)
norm =

Z(i)−µ√
σ2 +δ

(4.12)
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Where, µ , σ2 are the mean and variance of one mini-batch. Equation (4.12) is used to
normalize the current batch and this is followed for all the batches. δ is used for numerical stability
of the equation, when σ2 becomes zero. The output of the hidden layers can be given by Z(i)

f

Z(i)
f = ξ Z(i)

norm + γ (4.13)

Here γ and ξ are mean and standard deviation, which are additional learning parameters
of the model [Ioffe and Szegedy, 2015].

Batch normalization adds noise to the output as it has not been computed for the complete
set of input data. This gives a slight regularization effect to the model. The increase in batch size
reduces noise and regularization, but gives an advantage by reducing time to calculate the values
of the parameters.

Activation functions
Sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU), leaky ReLU are some of

the activation functions used in neural networks as per the application’s requirement. Sigmoid
and tanh activation functions are not preferred in the deep neural network because of the gradient
vanishing problem which drags the parameter update process into a large iterative loop. This
problem occurs in these activations because they have an S shape relation between input and
output with the output range of [0,1] and [-1,1], respectively. Both the functions show good
sensitivity in the mid-range i.e. 0.5 and zero for sigmoid and tanh, respectively. Very small
and very large values of input drag the output to the extent of the function. This saturation of
the functions makes it very difficult to train the model even for the high-end GPU. This problem
has been resolved using ReLU activation function by using linear dependency between input and
output for input greater than zero ( f (x) = max(0,x)). For both ResNet-50 and Inception ResNet V2
networks, ReLU activation has been used in all hidden layers, and softmax activation is used in
the decision layer of the fully connected network.

4.4.3 Inception ResNet V2
Inception networks have very deep architecture and require more time to train. The

training time of these networks has been considerably reduced by introducing residual blocks
at concatenation stages. Refer to Figure 4.10 for full model architecture, and Figure 4.11, 4.12
and 4.13 for architecture components. The stem is the first component in themodel, which contains
a series of Conv2D_BN and MaxPooling blocks, as shown in Figure 4.11(a). Other components
are Reduction_A and Reduction_B shown in Figure 4.11(b) and 4.11(c) used to reduce the size
of output data to 12×12 and 5×5, respectively. The number of filters, filter size, stride (S), and
padding are specified with each operational block.

The diagram shown in Figure 4.12(a) is a generalized schema for the inception_Resnet_X
(X=A/B/C) blocks given in Figure 4.13. Where inception block is replaced by Conv2D_BN, which
is a subnetwork of traditional Conv2D layers followed by batch normalization and activation.
While performing a residual summation of input and inception block output, the depth of both
should be the same, for that purpose scaling is used to compensate for the dimensionality reduction
induced by the Inception block. The scaling block consists of (1X1) Conv2D layer, and the depth of
each Conv2D layer is shown in Figure 4.13. Also, to reduce memory consumption, normalization
is done only after traditional layers, not after residual summation. ’Valid’ padding is used to get
reduced dimension and ’Same’ padding is used to get the output dimension the same as the input.
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Figure 4.10 : Inception ResNet V2 architecture [Szegedy et al., 2016].
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Figure 4.11 : Building blocks of Inception ResNet V2 [Szegedy et al., 2016] (a) Stem, (b) Reduction_A and
(c) Reduction_B.
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Figure 4.12 : (a) General schema for Inception_ResNet blocks [Szegedy et al., 2016] and (b) Inception_A
block [Szegedy et al., 2016].
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Figure 4.13 : Building blocks of Inception ResNet V2 [Szegedy et al., 2016] (a) Inception_ResNet_A, (b)
Inception_ResNet_B, and (c) Inception_ResNet_C.
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Figure 4.14 : Hierarchy followed for modulation classification.

4.4.4 Training of network
The proposed DCNN modulation classification architecture is trained in the hierarchical

manner defined in Figure 4.14. The Hierarchy follows binary classification at each step. The
optimum parameters (Lopt and Gopt) have been calculated for each individual step using the
method defined in section 4.3.5. The description of the training dataset and model parameters is
given in table 4.2. For each SNR, 30 SDP images are formed for training. From 0 to 30 dB SNR, 930
training images are formedwith a step of 1 dB, and from 35 to 70 dBwith a step of 5 dB, 240 images
are formed (1170 in total for a singlemodulation). These images are generated for eachmodulation
scheme for a particular L and G value to train the model. At the first level of the hierarchy, the
classification between two groups ASK and (FSK, MSK, PSK, and QAM) is done by training the
DCNNmodel with 10,530 (1170 of eachmodulation scheme in both groups) SDP images generated
with L =9 and G=4. The order of ASK is classified in two levels of training for specified L , and
G , and similarly, all modulations are classified by the following hierarchy as shown in Figure 4.14.
For each Resnet-50 and Inception ResNet V2 model, a total of eight DCNN networks have been
trained for the overall classification process.
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Table 4.2 : Dataset and system parameters used for DCNN training

Parameters Values
Amount of Training Data 8424
Amount of Validation Data 2106
SNR Range (dB) 0 to 70
Batch Size 16
Learning Rate 0.0001

4.5 EXPERIMENTS AND RESULTS
4.5.1 System implementation

RF signals are simulated in LabVIEW. Signals are pre-processed to downconvert at an
intermediate frequency mentioned in Figure 4.1. These signals are further used to form SDP color
images. DCNN model is implemented in python with the Keras libraries. GPU Quadro K2200
and CPU Intel Xeon E5-2640 have been used to train the model for all modulation schemes. All
the layers are made trainable. The description of parameters and dataset is given in table 4.2.
The model is compiled to create a computation flow graph with Adam optimizer of the learning
rate 0.0001. Batch size is taken 16 while training. 80% of data is used for training and 20%
is used for validation of the created model in every epoch of training. The model is trained
for 10 epochs and model weights are saved when validation accuracy is maximum in between.
The initialization of model weights has been done using the fine-tuned model for the ImageNet
dataset. The classification process includes two stages: training and testing. The training process
requires hours to complete for both the models while testing needs few milliseconds to complete.
Fortunately, training needs to be done once for a large dataset. The computation time to get the
classification result at each stage of the hierarchy for one signal is found to be 21.5 msec and 28.2
msec for ResNet-50 and Inception ResNet V2, respectively. The computation time is calculated for
1000 signal realizations and averaged for precision.

4.5.2 Performance of classification method
We employed DCNN for the classification of nine modulation schemes listed in table 4.1.

Classification results for all modulation schemes are shown in Figure 4.15, 4.16, and 4.17.
Classification results for 2ASK, 4ASK, and 8ASK modulation schemes using ResNet-50 and
Inception ResNet V2 models are shown in Figure 4.15. Both the networks achieve 100% accuracy
above 5 dB SNR. Figure 4.16 shows results for QPSK, 8PSK, and 16QAM. Accuracy for 2FSK, 4FSK,
andMSK schemes are shown in Figure 4.17. Results reveal that all the classes are reliably separated
above 9 dB SNR for both models. Classification results are given by the cumulative decision of
multiple stages. The final probability of classification is obtained by multiplying probabilities at
individual stages. As per the hierarchy followed for classification, ASK is separated from other
domain modulation schemes in first step of classification and the order-wise classification is done
in further steps. The SDP patterns for ASK schemes are different from the others as shown in
Figure 4.14, which gives good classification accuracy as given in Figure 4.15. While in further steps,
QPSK and 8PSK looks equivalent and 2FSK and 4FSK also looks equivalent in terms of features
which cause the accuracy degradation in the last step of classification.

4.5.3 Comparison with existing work
In this section, the accuracy of the proposed classifier is compared with classifiers based on

ANN [Popoola and van Olst, 2011], stacked autoencoders [Ali et al., 2017], clustering [Jajoo et al.,
2017], and decision-theoretic approach [Nandi and Azzouz, 1998], shown in table 4.3. In [Popoola
and van Olst, 2011], classification has been done based on statistical features of the signal, which
have been given to the artificial neural network (ANN) of two hidden layers. This method works
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Figure 4.15 : Accuracy versus SNR graph of 2ASK, 4ASK and 8ASK for ResNet-50 (Res) and Inception
ResNet V2 (Inc) models.
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Figure 4.16 : Accuracy versus SNR graph of QPSK, 8PSK and 16QAM for ResNet-50 (Res) and Inception
ResNet V2 (Inc) models.

well for lower SNR values, whereas proposed DCNN based classifiers perform better for 9 dB
SNR and above. For BPSK, QPSK, and 16QAM, the proposedmethod achieves better classification
accuracy than the method based on stacked autoencoders [Ali et al., 2017]. In [Jajoo et al., 2017], the
authors have used constellation to detect modulation. OPTICS (Ordering Points To Investigate
the Clustering Structure) has been used for estimation of the order of modulation and k-means
clustering method for domain identification. This method got 96% classification accuracy at 10 dB
SNR for BPSK, QPSK, and 16QAM. For BPSK, QPSK, 8PSK, 4ASK, 8ASK, and 16 QAM average
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Figure 4.17 : Accuracy versus SNR graph of 2FSK, 4FSK and MSK for ResNet-50 (Res) and Inception
ResNet V2 (Inc) models.
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Figure 4.18 : Average classification accuracy of QPSK and 16QAM.

accuracy at 20 dB SNR is 81.33%, whereas the proposed method got better results than both the
combinations of modulation schemes.

In [Nandi and Azzouz, 1998], classification has been done with two methods,
decision-theoretic approach, and ANN-based. Classification results of their work show that ANN
is better than the decision-theoretic approach, whereas our proposed DCNN models work better
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Table 4.3 : Comparison of results with existing methods

Modulation Schemes Method SNR (dB)
0 5 10 15 20

2ASK, 4ASK, 2FSK,
QPSK

[Popoola and van Olst, 2011] 99.75 99.91 99.87 - 99.94
Proposed - ResNet-50 77.50 99.25 100 100 100

Proposed - Inception ResNet V2 82.25 96.75 100 100 100

BPSK, QPSK, 16QAM
[Ali et al., 2017] 46.67 89 99.93 100 100
[Jajoo et al., 2017] - 66.33 96 100 100

Proposed - ResNet-50 68.67 98.67 100 100 100
Proposed - Inception ResNet V2 72.67 98.33 100 100 100

2ASK, 4ASK
Decision theoretic

[Nandi and Azzouz, 1998] - - - 99.05 98.5
Proposed - ResNet-50 68.67 98.67 100 100 100

Proposed - Inception ResNet V2 72.67 98.33 100 100 100

2FSK, 4FSK
Decision theoretic

[Nandi and Azzouz, 1998] - - - 99.65 98.75
Proposed - ResNet-50 68.67 98.67 100 100 100

Proposed - Inception ResNet V2 72.67 98.33 100 100 100
BPSK, QPSK, 8PSK,
4ASK, 8ASK, 16QAM

[Jajoo et al., 2017] - 48.33 81.33 88.33 100
Proposed - ResNet-50 64.24 89.04 100 100 100

Proposed - Inception ResNet V2 59.21 89.33 100 100 100
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Figure 4.19 : Comparison of average classification accuracy of proposedmethods with CNN1 and CNN2.

than these for selected modulation schemes. Results for (2ASK, 4ASK) and (2FSK, 4FSK) are
compared with the proposed method at 15 dB and 20 dB SNR, given in table 4.3. Comparison
of average classification accuracy of QPSK and 16QAM for present research and four previous
research works is reported in Figure 4.18.

In [Aslam et al., 2010], the authors have developed the Genetic Programming in
combination with K - Nearest Neighbor (GP-KNN) method, where new features were generated
using genetic programming and classification has been done using KNN. The proposed method
provides better classification accuracy than GP-KNN for BPSK, QPSK, and 16QAM, for an equal
number of symbols and results are compared in table 4.4. In [Hiremath et al., 2019], 10 modulation
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Figure 4.20 : Comparison of average classification accuracy of proposed methods with CNN-AMC and
traditional AMC methods.

Table 4.4 : Comparison of results with GP-KNN

Modulation Schemes Method SNR (dB)
4 12 20

BPSK, QPSK, 16QAM GP-KNN [Aslam et al., 2010] 92.72 99.90 99.99
Proposed - ResNet-50 100 100 100

Proposed - Inception ResNet V2 100 100 100

schemes are classified using Stockwell transform where the DL model has been proposed and
trained with extended labels of 3-channel images to prepare the model for varying SNR. The
authors have given training to their proposed model for the range of SNR (-8 dB, 8 dB). For the
SNR of 8 dB, their proposed model doesn’t provide 100% accuracy, which concludes that possibly
it won’t be able to provide reliable classification accuracy for a higher range of SNR. While our
proposed model has been given training for 0 dB to 70 dB SNR and it provides 100% average
classification accuracy above 9 dB SNR.Hierarchical ANNhas been employed in [Louis and Sehier,
1994] for classification between 10modulation schemes and gives classification accuracy of 90% for
50 dB SNR. The proposed methods outperform for the same set of modulation schemes.

In DCNN models, mostly constant length of the signal is required when IQ data is
used for modulation detection. When the signal length is more than the required input
length, authors in [Zheng et al., 2019] have suggested three fusion methods viz. voting-based
fusion, confidence-based fusion, and feature-based fusion to fully utilize the signal length for
improvement in the system performance. Two DCNN models are given in [Zheng et al., 2019],
CNN1, and CNN2 to classify a set of modulation schemes. In Figure 4.19, performance of
proposed models is compared with CNN1 and CNN2 for average classification accuracy of three
proposed fusion methods, where considered modulation schemes are {Θ1 ∈ BPSK, QPSK, 8PSK,
2FSK, 4FSK, 4ASK, 8ASK, 16QAM}. In [Meng et al., 2018], a DCNN model has been proposed for
modulation classification by considering raw IQ data and estimated SNR of the received signal as
an input. Also, two-step training including pre-training and fine-tuning is performed to reduce the

41



training time. The average classification accuracy of CNN-AMC, proposed in [Meng et al., 2018]
is compared with our proposed methods in Figure 4.20 for {Θ2 ∈ BPSK, QPSK, 8PSK, 16QAM}
modulation schemes. The classification accuracy of the developed method in [Wang et al., 2020b]
is compared with the traditional AMC method. The traditional AMC method takes higher-order
cumulants (HOC) as input and SVM for classification. The classification results of the traditional
method are compared with our proposed methods in Figure 4.20.

…
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