2

Topological entropy of one-dimensional deformed maps

2.1 INTRODUCTION

In this chapter, we apply type-1 and type-2 deformation schemes on the logistic map, and
type-1 deformation on the Gaussian map to analyze the dynamics of these newly deformed maps.
In Section 2.2, we analyze the g-logistic map of type-1 by calculating the basic dynamics like fixed
points, periodic orbits and transition from periodicity to chaos. We calculate the topological entropy
to show the existence of Li-Yorke chaos of the deformed logistic map. Further, we show that there
exist a region of physically observable chaos, which is separated by the region where the chaos is
not physically observable. In Section 2.3, we apply type-2 deformation on the logistic map, and
discuss the similar analysis for the deformed logistic map. Finally in Section 2.4, we analyze the
deformed Gaussian map with type-1 deformation and compute the topological entropy using the
Lap Number Method to discuss the chaotic behaviour of the map.

We recall some basic definitions :
An interval map f: [a,b] — [a,b] is said to be unimodal if there exists a unique point ¢ € (a,b), the
critical point, where Df(c) = 0, such that f is strictly increasing in [a,c) and strictly decreasing in

(c,b].

A critical point ¢ of a map f is said to be non-flat critical point if there exists n € N such that
D'f(c) #0 and D*f(c) =0, where 1 <k < n.
Here D" f denotes the n'" derivative of f.

Let f be a C? map. Then the Schwarzian Derivative f is denoted by S(f), defined as

sp( = 240 3 (sz @))2.

- Df(x) 2\ Df(x)

A unimodal map f is called S-unimodal if it has negative Schwarzian derivative.

Let I = [a,b] be a closed interval and let f,g:I— I be two maps. If there exist a homeomorphism
h:I— 1 such that ho f = goh then f and g are said to be topologically conjugate. The
homeomorphism 4 is called topological conjugacy.

2.2 Q-LOGISTIC MAP OF TYPE-1

One-dimensional logistic map is given by

Sa(x) = ax(1 —x), (2.1)
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where the parameter a € [0,4] and x € [0, 1].
Deformation of type-1 on real number x and deformation parameter ¢; is given by:

_l=a

o =1 o (2.2)

where ¢; € R. As g; — 1 the deformed number [x], — x.
Consider this deformation [x]4, on x of f,(x) then we obtain the following deformed logistic map:

_a(l—q))(q) —q1)
Ja([x]g,)(x) = i 1_q]1)2 :

Eﬁaan(x)v

(2.3)

where a € [0,4], x € [0,1] and ¢; € (0,0)\{1}. As the limit g; — 1, the deformed logistic map
(2.3) approaches to the usual logistic map f,(x). We consider ¢; € (0,15)\ {1} in our discussion.

This map is an interval map from [0,1] to [0, 1] which attains the maximum value at critical point
C = loel@+1)/2)
log(q1) *

Let us consider ¢, 4, (x) = [-]4, o fu(x) = [fa(x)]4, and the corresponding composition function
is given by
1— qax(lfx)
Y1 (x) = 1_17611 (2.4)

We call it as g-logistic map of type-1. The map ¥, (x) is an interval map from [0,1] to [0,1] and
has unique critical point at x = 0.5 for all g; € (0,00)\{1} and a € [0,4].

Clearly, if two maps are topological conjugate to each other then it implies that they
have similar dynamics. Since the map ¥, , (x) is topological conjugate to %, (x), through the
homeomorphism [x];,. Then we have

Yaqi(x) 0 [x]g, = [x]g, © Fag, (x).
As the dynamics of .%, 4, (x) and ¥, 4, (x) are similar, it is more suitable to work with ¢, ;, (x) instead
of Fagq (x). Since ¥4, 4, (x) has unique critical point whereas the map %, 4, (x) has different critical

points depends on the value of g;. Note that the critical point plays an important role in the study
of kneading theory and other dynamics like finding Misiurewicz parameter.

Lemma 2.2.1. The map 9,4, : 1 — 1 is S-unimodal map and so F,q4 (x).

Proof. Clearly, 9, 4, (x) is C*-map with ¢, 4, (0) =%,,,(1) =0.
Further, ¢, 4, (x) has unique critical point at x = 0.5 for any value of a and g;. Therefore,

S(Gar) () = S([as © fa) (¥) = (S([Jgy) © fal)) - (£2(0)* +S(fa) (),

o NS S S
= —5(logq1)™-(a(1 - 2x)) (1-2[q)*

This implies that S(%,4,)(x) <0 for all x. Hence S(%,4,)(x) is S-unimodal. Since ¥, (x) is
topological conjugate to %, 4, (x), s0 %, 4, (x) is also S-unimodal map. O
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2.2.1 Fixed points and other attractors

We fix the parameter ¢ and vary the deformed parameter ¢, then we notice that the map
9.4, (x) has three fixed points {0,x7%,x* } such that 0 <x* <x%, the existence of these fixed points
depends on the value of a and g;. The fixed point x* = 0 exists for all values of @ and ¢g,. Further, it is
stable for a < (g1 —1)/(log(q1)). The fixed point x* undergoes reverse periodic doubling bifurcation
route to chaos. The attractors lie on the period doubling route of x* coexists with x* =0 for the
higher value of g;. We notice that whenever two attractors coexists, the fixed point x* exists as
repeller between these attractors.

For a given value of parameter ‘a’, the fixed points of ¢, , (x) are shown in Fig. 2.1 as
the deformed parameter ¢, varies. The black line represents the stable fixed point and grey line
represents the unstable fixed point. In Fig. 2.1(i), the x*_ starts as stable fixed point (black colour)
and bifurcates into period-2 orbit (where fixed point x* plotted in grey colour). The two black lines
together shows coexistence of two stable fixed points and x* is unstable fixed point between them.
In the Fig. 2.1(ii), the fixed point x* is stable for higher value of g; beyond 15. The black line
of x* = 0 and unstable fixed point x* shows that there are attractors en route of x7 coexists with
x*=0.

The size of the basin of fixed point x* is the fraction of initial conditions attracted to the
fixed point x*, and it is denoted by @(x*). The size of the basin of the map ¥, ,, (x) for different
a and g values is shown in the Fig. 2.2(i). There are three conditions arise based on the value of
o(x*) which are as follows:

1. o(x*) =1, the fixed point x* is the unique attractor.

2. o(x*) =0, there is unique attractor which is either x% or other attractors (periodic attractor,
a Cantor set or a transitive interval attractor) generates when x* become unstable.

3. 0 < w(x*) < 1, there are multiple attractors. As x% undergoes periodic doubling route to
chaos, these attractors exists with the stable fixed point x* = 0.

** ** K
x5
.
X

vn 0.6 i v 0.6
-+ -+
£ £
o o
o o
kel 4 kel
D 04 S 0.4
X X
w w

0.2 0.2

x*
x*
x*=0 =
0.0 0.0 x =0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
q1 q1
(i) a=3.3 (ii) a=3.9

Figure 2.1. : Fixed points of g-logistic map of type-1 ¢, (x) for deformed parameter ¢; €
(0.00001, 15).

The region R; represents @(x*) = 1 that implies x* = 0 is the only stable attractor. In the
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region R;, the size of the basin of x* =0 is 1 which are in general implies that all the trajectories
in this region are converging to x* = 0 but there are a set of disconnected points which are not
converging to x* = 0. This fact leads to the Proposition 2.2.2. The region Rj3 indicates the area
when o(x*) =0 that implies there is a unique metric attractor, which is different from x* =0. The
region R4 shows the coexistence of attractor (periodic or chaotic) where 0 < w(x*) < 1. Fig. 2.2(ii)
shows the presence of stable fixed point x* with the chaotic attractor based on positive Lyapunov
exponent. We consider the initial condition xy = 0.5 for computing the Lyapunov exponent.

35F

25r

Q Q
@) (ii)

Figure 2.2. : (i) Basin of attraction of the fixed point x* = 0, where the region Rj UR; represents
o(x*) =1, Rz is for @(x*) =0 and Ry is for 0 < w(x*) < 1; (ii) The region R4 represents
coexistence of attractors in which black colour shows the chaotic attractor based on
positive Lyapunov exponent.

Proposition 2.2.2. There is an open interval (y1,%) C [0,4] for every (q1,a) € Ry such that there
exists some states x;,x; € [0,1] for which there exists no € N such that

@" (xi) = x* and G

a,q1 aq1 (xj) = 0 for all n > ny.

Proof. We divide the interval I =[0,1] into J; = [0,x*), Jo = [x*, a1], J» = (a1, 1],

where o =4, (x*).

All these intervals are shown in Fig. 2.3. To make notation simple, we use ¢(x) in place of ¥, 4, (x).

Suppose,
Lo={x:9(x) €, and 9*(x) € J,}.

Clearly Ly is an open interval containing the critical point ¢ and Ly leave Jy in the first iteration.
Further orbits of Ly converges to x* = 0.

Therefore Jo\Lo have two closed intervals Iy and I;. Let
L = {x : g(x) S L()}.
If x € Ly, then we have ¥ (x) € Ly, 4%(x) € J», 43(x) € J; and 4" (x) — 0.

Further L; contains two open intervals L;; in Iy and L;> in Ij, which leave Jy in second
iteration and falls into J; in the third iteration. The future orbits of L; converges to x* = 0.
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Figure 2.3. : The g-logistic map of type-1 4, ,, (x) at ¢; = 14 and a = 3.95.

Clearly, Jo\{LoUL,} contains four closed intervals which maps onto Iy and I; by ¢4. In the
second iteration of ¢, these intervals maps onto Jo. The L, contains four open subintervals L, for
1 <k <4 in these closed intervals. The L, mapped onto Ly by 42 and points of Ly j leave Jp in the
third iteration of ¢. The interval

Ly ={x:9%(x) € Lo}

Continuing in the similar manner, the construction of L, is
L,={x:9"(x) € Ly},

which is similar as

Ly={xe€Jy:9(x) €Jy for 0<i<n, but " (x) € J, and 4" (x) € J;}

th

The L, contains 2" open intervals L, where 1 <k <2". Points of L, leave Jy in (n+1)"" iteration

and ultimately converges to x* = 0.

The set of points x; € I' = Jp\ ( U L,,) will never escape Jo. The rest of the points x; € I =T

converges to the fixed point x* = 0. O

From the above proposition, we conclude that there exists a Cantor set I which is invariant
under the map ¥, 4, (x) and therefore the orbits of points in this set do not converge to zero.
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2.2.2 Topological entropy

Topological entropy was introduced by Adler et al. on compact metric space X [Adler et al.,
1965]. The topological entropy of any open cover u of compact space X as H(u) =logN(u), where
N(u) denotes the number of sets in a subcover of minimal cardinality.

Topological Entropy: Assume that f is piecewise strictly monotone mapping of an interval.
Let ¢, be the number of points at which f” has extrema. Then according to [Misiurewicz and
Szlenk, 1980], the topological entropy is defined as
1
h(f) = lim ~log(cn),

n—oo n

1
h(f) < Zlog(cn) : for any n.

Topological entropy can be positive or zero and it is invariant under topological conjugacy. A
dynamical system is said to be ‘simple’ if its topological entropy is equal to zero. Topological
entropy is a measure of chaotic behaviour and chaos can be recognized with positive topological
entropy.

Let f be a continuous interval map on I to itself. A set U €I is said to be scrambled set if
there exists 6 > 0 such that every x,y € U with x # y, satisfies the following conditions:

timinf | £"(x) ~ f"(y) |= 0 and limsup | /"(x) ~ f"(3) |> 8.

n—oo

By Li and Yorke [Li and Yorke, 1975], f is called chaotic if there is an uncountable scrambled set
Uucl

Relationship between topological entropy and Li-Yorke chaos for the continuous interval
map proved in [Blanchard et al., 2002]. According to which positive topological entropy is sufficient
condition for the map to be chaotic in the sense of Li and Yorke. Converse of the statement is not
true in general.

If f and g are two unimodal maps and K(f) < K(g) then By [Block et al., 1989], we have
h(f) < h(g). Here, K(f) denotes the kneading sequence of f.

Algorithm for computing topological entropy

We discuss the following algorithm for computing topological entropy of the map ¥, 4 (x).
We compare the kneading sequence K(%) with the kneading sequence of tent map K(7y) with slope
s € [1,2] whose entropy is known. The algorithm is given in the following steps:

(1) Choose the accuracy € for the entropy and take a positive integer N (length of kneading
sequence) such that 4 < €.

(2) For fixed parameter a and g, iterate the map %, (x) taking critical point as initial point
with N times and find the kneading sequence K(%).

(3) Take a; =1 and by =2, the initial bound of the slope s € [ay,b;].
(4) Take slope s = %.

(5) Compute K(7T;) with the slope s i.e. %.
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(6) Compare K(%) with K(Ty):

o If K(¢) > K(T;) then h(¥) > K(T;) so define a; = s and the next interval bound for the
slope is [s,b].

o If K(¥) < K(T;) then h(¥) < K(T;) so define by = s and the next interval bound for the
slope is [ay, s].

(7) If by —ay < € then h(%) = log(“F2) otherwise go to step-4.

(8) Repeat the step 2 to step 7 for the different value of parameter a and g .

We have implemented the above algorithm using the software MATLAB for the map 9,4, (x) by
taking € = 0.001 and N = 1001. For a € (3.5,4) and ¢q; € (0,1), the graph of topological entropy is
shown in Fig. 2.4 and the level curves are shown in Fig. 2.5.

— 05

= 0.4
o

Entropy

Figure 2.4. : Topological entropy of the map ¥, 4, (x) for a € (2,4) and g; € (0,15).

In the Fig. 2.5, dark blue colour shows the map with zero topological entropy and all other
colours are corresponding to the maps of positive topological entropy. The value of the entropy
changes when the bifurcation occur. The zoom part of level curve for values g, € (0,0.05) are shown
in Fig. 2.5(ii). The minimum of a., (where transition takes place from simple to chaotic dynamics)
among ¢q; € (0,15) can be observe nearly at a = 2.5. For different ¢, the values of a. are given
in Table 2.1. At g; = 0.02, the map %, ,, (x) has a. = 3.248973 which is very much less than the
(e = 3.56995... of usual logistic map (2.1). This illustrate the fact that the phase transition of
g-deformed map occurs much earlier than the canonical logistic map.
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Figure 2.5. : Level curves of the map ¥, ,, (x) for a € (2,4); (i) ¢1 € (0,15);
(i) ¢1 € (0.001,0.05).

qi1 oo
1073 | 2.435607
0.02 | 3.248973

0.1 | 3.478148
0.5 | 3.565168
0.8 3.57004
0.9 3.57015

0.999 | 3.560947

Table 2.1. : The value of parameter a where topological entropy turns zero to positive for g; € (0,1).

2.3 Q-LOGISTIC MAP OF TYPE-2

Type-2 deformation on the real number x and deformed parameter g, is given by
@ —q
X = I 25
i = £ 29
where g, € (0,0) \ {1} with the required property that g» — 1 then the deformed number [x],, — x.

We apply deformation [x],, on x of f,(x) given in Eq. (2.1) then we obtain the g-logistic map
of type-2 as

Haﬂz (x) = [']Clz Ofa(x>7
which implies

ax(1-x)  ax(x—1)

Ha,qz (X) = e @ _q_21 ) (26)
2
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where a € [0,4] and x € [0,1]. For the investigation of properties of H, 4,(x), we choose the bounded
domain ¢, € (1,30). The map H, g4, (x) is an interval map from [0,1] to [0,1] and it has unique critical
point at x =0.5.

0.8 v 084 x5

o
o
L
4
o

Fixed Points
o
IS
-,
\
I
Fixed Points
o
IS
\x
I

0.2+ .': 0.2

0.0+ 0.0

T T T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
q2 92

(i) a=3.3 (ii) a=3.6

Figure 2.6. : Fixed points of the map H, 4, (x) for deformed parameter ¢, € (1.001,25).

The fixed points of type-2 g-logistic map H, 4, (x) cannot be solve analytically. Since the
map Hggq,(x) is a transcendental equation, therefore we compute fixed points numerically. The
fixed points of Hg 4, (x) are shown in Fig. 2.6(i) and Fig. 2.6(ii) for a = 3.3 ans a = 3.6 respectively.
The black line represents the stable fixed point and grey line represents the unstable fixed point.
The zoom parts of the Fig. 2.6 around the bifurcation threshold is shown in Appendix Fig. B.1.
From the Figs. 2.6(i) and 2.6(ii), we observe that as the deformed parameter ¢, varies from 30 to
1, initially there are three fixed points, namely x*,x} and x*, and later x* will disappear. The
fixed point x7 undergoes reverse period doubling bifurcation route to chaos. The fixed point x* =0
exists as coexistence of attractor with other attractors. In fact, whenever there is coexistence of
attractors then x* is a repelling fixed point between these attractors. As the fixed point x* =0
become unstable, the repelling fixed point x* also vanishes and the map has unique attractor.

The size of basin of the fixed point x* is denoted by @;(x*). We plot the basin of attraction
of the fixed point x* = 0 to obtain the region of coexistence of attractor, which is depicted in the
Fig. 2.7(i). The region Ry UR; where all initial conditions attracted towards x* i.e. @(x*) =1 is
indicated by blue region. The region R3 where all initial conditions are attracted towards unique
attractor except x* i.e. @;(x*) =0, which is shown as red region. The region R4 where two or more
attractor coexists i.e. 0 < @;(x*) < 1 is shown by the green region. We are also interested in the
region where x* = 0 coexists with chaotic attractor. We calculate Lyapunov exponent to highlight
the chaotic region. In the Fig. 2.7(ii), the region R4 of coexisting attractor is shown as green colour,
and chaotic region with positive Lyapunov exponent is shown as black colour. We consider the
initial condition xy = 0.5 for computing the Lyapunov exponent. The coexistence of attractors can
be visualized by the bifurcation diagram shown in Appendix Fig. B.2. The fixed point x* = 0 shown
in blue colour, coexists with chaotic attractor shown in black colour.

Proposition 2.3.1. There is an open interval (y1,%) C [0,4] for every (qa2,a) € Ry such that there
exists some states x;,xj € [0,1] for which there exists nyo € N such that

HY . (xi) = x* and H

a,q> a7qz(xj) —0 fOT alln> nop.

Proof is similar to the Proposition 2.2.2.
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Figure 2.7. : (i) Basin of attraction of the fixed point x* = 0; (ii) Coexistence of attractors with chaotic
attractor (black colour).

We calculate the topological entropy of the map Hgg4,(x) with the algorithm given in
Section 2.2.2 using the software MATLAB. The topological entropy of the map H,g4,(x) is shown
in Fig. 2.8(i), and the level curve is shown in Fig. 2.8(ii) for a € (3.5,4) and ¢» = (1,30). The map
with zero topological entropy is shown in dark blue colour on the level curve Fig. 2.8(ii), whereas
the rest of colours represents maps with positive topological entropy. We get higher entropy maps
as the parameter a increases. We observe that as g, approaches to 1, we obtain positive topological
entropy with smaller value of the parameter a. The minimum of a., where transition takes place
from simple to chaotic region obtained nearly at g, = 1.0001, g = 3.56995.... It is clear from
Fig. 2.8(ii) that for g, # 1, the a. of the map Hgg4, (x) is greater than the a. =3.56995... of the
canonical logistic map.
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Figure 2.8. : (i) Topological entropy of the map H,g,(x) for a € (3.5,4) and ¢» € (1,30); (ii) Level
curve.
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2.4 Q-GAUSSIAN MAP OF TYPE-1

Let g.(x) be the Gaussian map, which is given by
g(x) =+, (2.7)

where b # 0 and ¢ is real parameter. This one-dimensional interval map with two-parameters
qualitatively describes the dynamics of electrical circuit with a nonlinear diode which shows chaotic
behaviour.

Applying type-1 deformation given by Eq. (2.2) on x of g.(x) then we obtain the following
g-deformed Gaussian map.

el = ") (2.8)
=Geg, (X).

We call it as g-Gaussian map of type-1. This is an one-dimensional unimodal map with three
parameters b, ¢ and deformed parameter g;, where g; >0, b >0 and ¢ € (—1,1). In this discussion
we consider b =7.5, g1 € (0,2)\ {1} and ¢ € (—1,1). As g; — 1, the deformation [x], — x, the
original Gaussian map can be obtained.

I—q‘f

2
Remark 2.4.1. The map G4, (x) = e (H“> +c, satisfies the following properties:

1. The unique critical point of G4, (x) is C =0 which is non-degenerate i.e., G, (0) # 0.

2. The maximum value is attained at x =0 which is 1 +c.

3. Gegq, (x) is of class C and has negative Schwarzian derivative,

S(golg) =(S(g)o[g)- ([x];, )2 +S([]g,) (%),
where §(g)(x) = =56+ and S([g,)(x) = =054

Since,

§(Geq)(x) = S(g0[]g) (%),

—— 5 togan? (

4P(g)P{(1— g0 +3(1— 1)}
21— g2 (1—a1)? “)'

Hence S(G.4,) is negative for all ¢ and q;.
2.4.1 Fixed points and periodic attractors

The g¢-Gaussian map Gcg4 (x) is a transcendental equation so we need to employ
Newton-Raphson method to get the fixed points of the map. As the parameter ¢ varies from
-1 to 1, initially we get three fixed points in an order x* <x* <x7. Out of these three fixed points,
two of them x* and x* are negative and other one x7 is positive. Later we have only one fixed point
x% . For the different values of ¢, fixed points of the map are shown in Fig. 2.9. The thick line (black
colour) indicates the stable fixed points whereas the thin line (grey colour) indicates unstable fixed
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points. The fixed point x* exists as co-existing attractor with other periodic attractors. Whenever,
there is bistability of attractor, the x* exits as unstable fixed point between these attractors. In
the region where x* is unstable we have other metric attractors (periodic orbit, a Cantor set or a
transitive interval attractor). The q-Gaussian map undergoes period doubling route to chaos. The
superstable periodic orbits of period-2" of G. g4, (x) are given in Appendix Table B.1.
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-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.0 -0.5 0.0 0.5 1.0
c c

(i) q1 =0.75 (ii) q1 = 1.9

Figure 2.9. : Fixed points of g-Gaussian map of type-1 G. 4, (x) for ¢ € (—1,1).

2.4.2 Topological entropy by lap number method

Let us consider class .% of C?> maps f: [a1,b1] — [a1,b1] with a critical point at x. € (aj,b;),
and satisfy the following;

D () <0
(IT) f'(x) >0 for x < x. and f'(x) <0 for x > x..

Topological entropy of f € .% can be calculated through the minimal number of monotonic pieces or
laps of the iterates f". Let I, be the minimal number of monotonic pieces of ", then the topological
entropy of f is given by

m(f) = lim sup L log(i). (2.9)

To calculate the lap number [, of the function f € .%, we use the following Theorem by R.
Dilao [Dilao and Amigé, 2012].
Theorem 2.4.2. Let Q = (Qi)x>1 be a sequence of f € F, and set,
Lh={1<j<n:QeA},
where M = {m* M~ ,m°,M°}. Let (a@)i>1 and (Bu)i>1 be the sequences defined below, then

ln+l :Zln_2 Z(anrlfj_lnfj)_an_Bna (2'10)
JEh

where ly=1 and n>1.
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The procedure is to calculate the topological entropy is as follows:

(1) Let ©¢(x) be a sequence with entries ®f,n(x) where n > 0.

1 if f(x) > x,
Orn(x) =<0 if f(x) =x,
-1 if f(x) < xe.

(2) Define another sequence Qy with entries Q, where n > 1. Entries of Qf belonging to the
alphabets {M*,M~ , M° m* m~ mo} The sign of @f,n(x.) decides the sign of symbols of Q¢ ,.
The symbol can be decide as if H’ " 1®f7,-(xc) is odd then symbol m otherwise M.

(3) The functions A(k) and p(k) with A(0) = p(0) =0 and for k > 1

(k) = 0 if sign(f*(a;) —x.)- sign(fHA*1 —x,) <0,
1 if sign(f¥(ar) — x.)- sign(f1TAED —x) > 0.

(k) = 0 if sign(f*(by) —x.)- sign(fl"’l(k_l) —x.) <0,
PUIZN 1 it sign(f*(by) — x.)- sign(f14ED) — x) > 0.

(4) The sequence o and Py can be calculated as

0 if A(k)=0,

=40 if A(k) #0 and Q3 4—1) € A,
1 if A(k) #0 and Qp 1) & A
0 if p(k) =0,

Be=140 ifp(k)#0and Qi 41y € .,
1 if p(k) #0 and Q1) ¢ A,

where .# = {m*,M~,m°,M°}.
(5) Lap number [, can be calculated using Theorem 2.4.2.

(6) Put the value of [, in Eq. (2.9) to evaluate topological entropy h;(f).

We implement the above algorithm using the software MATLAB to calculate the topological entropy
of the map G4, (x), which is depicted in Figs. 2.10 and 2.11.

The topological entropy and Lyapunov exponent of q-Gaussian map G g, (x) are shown in
Fig. 2.10 for fixed g;. The region where topological entropy is positive taken as chaotic region.
As g increases from 0 to 2, the chaotic region of G, (x) gets contracted and after particular
value of ¢g; there is no chaotic region, which is illustrated in Fig. 2.10. The topological entropy
for ¢ € (—1,0) and ¢; € (0,2) is shown in Fig. 2.11(i) and its level curve is shown in Fig. 2.11(ii).
The dark blue colour indicates the map with zero topological entropy and rest of the colours is
for positive topological entropy. We observe that as the deformation parameter g; — 0, the map
G. 4, (x) has positive topological entropy for wide range of parameter c.
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Figure 2.10. : Topological entropy and Lyapunov exponent of the map G, (x) are shown in red and
blue colours respectively at b= 7.5, and x axis denotes ¢ € (—1,0). We consider the
initial condition xog = —0.1 for computing the Lyapunov exponent.

Figure 2.11. : (i) Topological entropy of the map G, (x) as ¢ and g varies; (ii) Level curve.
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2.5 CONCLUSIONS

In this chapter, we have applied type-1 deformation scheme on the logistic map (Eq.(2.2))
and analyzed the basic dynamics and dynamic paradox. We observed that the transition from
simple to chaotic dynamics of g-logistic map of type-1 happened much earlier than the canonical
logistic map. The composition of two simple maps, deformation map [x]y, and logistic map f,(x)
(for a < aw) turns to be chaotic, which shows the Parrando’s paradox in g-logistic map of type-1.

We have computed the topological entropy to prove the existence of Li-Yorke chaotic maps
and highlights the region where the chaos found to be unobservable. The topological entropy of
the map “a,q(x) (Eq.(2.4)) is positive in this region whereas all the trajectories seems to converge
at x* = 0. But this will not happen. Further, we notice that there is a set of totally disconnected
points which do not converge to x* = 0.

We also calculated the topological entropy of the g-logistic map of type-2 and observed that
the a. value (where the transition takes place from simple to chaotic behavior) of g-logistic of type-2
is larger than a. value of canonical logistic map. Therefore, we conclude that there is a delay in
the phase transition for this deformed map. This is contrary to the type-1 g-logistic map, where
the phase transition happens earlier than the canonical logistic map.

In the type-1 deformed Gaussian map (Eq.(2.8)) we have analyzed the basic dynamics and
computed the topological entropy by using Lap number method. From this analysis we conclude
that there exist Li-Yorke chaos and also the region of unobservable chaos.
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