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Dynamics of deformed Hénon-like map

5.1 INTRODUCTION

The Hénon map was introduced in [Hénon, 1976] as a simplified model of the Poincare
section of the Lorenz model. It is the first example of two-dimensional quadratic map for which a
non-hyperbolic strange attractor shown numerically. The Hénon map exhibits the stretching and
folding properties of the Poincare map. One of the differences between the Hénon system and
Lorenz system is that some trajectories of the Hénon map escape to infinity, whereas the Lorenz
system has all bounded trajectories.

An attractor is a compact invariant set Λ with a dense orbit and whose stable set has
non-empty interior. If an attractor Λ has a dense orbit with a positive Lyapunov exponent, then
it is called strange attractor. In [Benedicks and Carleson, 1991], it was proved that there exists
a set of positive two-dimensional Lebesgue measure such that the Hénon family exhibits strange
attractor, which is the closure of unstable manifold of the fixed point which lie in the first quadrant.
These results have been extended in [Mora and Viana, 1993] to a more general perturbation of the
quadratic family on the real line i.e. Hénon-like maps.

In this chapter, we apply the type-3 deformation on Hénon-like maps and obtain the
deformed Hénon-like map, namely q-Hénon-like map. We investigate the various dynamical
properties of q-Hénon maps for different deformed parameters. First we construct the “most
attracting curve” in the parameter space, where the transition take place from simple to chaotic
dynamics. On the boundary, these maps have special properties. The topological and geometrical
properties of these maps are very interesting to study. We use heteroclinic web, it is the structure of
stable and unstable manifolds of periodic points of q-Hénon maps and the concept of renormalization
to describe the dynamics of q-Hénon-like maps. Finally, we conclude with some similarities and
differences between the q-Hénon maps and the canonical Hénon maps.

This work is organized as follows. In Section 5.2, we discuss the formation of the q-Hénon
map by applying the deformation on the state variable x. We discuss some basic properties
and stability of the fixed points of the system. In Section 5.3, we propose an algorithm for the
construction of a curve of parameter (a,b) such that the q-Hénon map on this curve has an
attracting period 2n-cycles (as n → ∞). These curves are denoted by γ2∞,ε for each ε associated
to the deformed parameter q. We show that for ε > 0, the phase transition happens prior to
the canonical Hénon-like maps, which explains the Parrondo’s paradoxical behaviour. We also
describe the location of periodic attractors by tracing the unstable manifold of the fixed points. In
Section 5.4, we define the heteroclinic web and describe the heteroclinic bifurcation on the curve
γ2∞,ε for various ε values. Further, we show that before the heteroclinic bifurcation on the curve
γ2∞,ε , all q-Hénon maps are infinitely renormalizable and having Cantor set as an attractor. Finally
in Section 5.5, we show that the basin of attraction of q-Hénon maps do not have an escaping region
for a particular set of deformed parameters.
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5.2 Q-DEFORMATION OF HÉNON-LIKE MAPS

The Hénon-like map is given by the following system
xn+1 = fa(xn)−byn

yn+1 = xn
(5.1)

where a ≥ 1 and b > 0 are the parameters. The Hénon-like map is an area contracting map if |b|< 1
and it is area preserving map when b = 1. Note that the map has constant determinant of Jacobian
b and it is orientation preserving map for b > 0.

The Hénon-like map corresponding to the system (5.1) can be re-written as

Ha,b

(
x
y

)
=

(
fa(x)−by

x

)
(5.2)

where 0 ≤ b < 1 and fa(x) = a− x2. In the case of degenerate map (b = 0), there exist a unique a∗

for which the map Ha∗,0 is the accumulation of period doubling.

In the non-extensive statistical mechanics of Tsallis [Gell-Mann and Tsallis, 2004], the
deformation of real number x has been introduced as

[x]q =
x

1+(1− x)(1−q)
. (5.3)

As the deformed parameter q → 1, then the deformed number [x]q → x.

Let 1−q = ε, then Eq. (5.3) can be rewritten as

[x]ε =
x

1+ ε(1− x)
, (5.4)

where ε ∈ (−1,∞). For computational purpose we consider ε ∈ [−0.2,0.5] in our discussion. Clearly,
[x]ε and inverse of [x]ε are continuous on x ∈ (−2,3). Therefore, the deformation map [x]ε is a
homeomorphism for x ∈ (−2,3).

The second equation of Hénon-like map (5.1) indicates that yn+1 states are the previous xn

states. So the information about dynamic action found entirely in the sequence xn alone. This
suggest that it is meaningful to analyze the deformation on state variable xn only. Therefore, we
apply the deformation [x]ε in the direction of state variable x of Hénon-like map Eq. (5.2). Then
we obtain the deformed Hénon-like map as

Ha,b

(
[x]ε
y

)
=

(
fa([x]ε)−by

[x]ε

)
≡ Ha,b,ε

(
x
y

)
(5.5)

On simplification, we get

Ha,b,ε

(
x
y

)
=

(
Fa,ε(x)−by

x
1+ε−εx .

)
(5.6)

where

Fa,ε(x) = a− x2

(1+ ε − εx)2 , 0 ≤ b ≤ 1, and a > 0.

Here, the map Fa,ε(x) is a q-deformed one-dimensional map. As the parameter ε → 0, the map
Fa,ε(x) approaches to the quadratic map fa(x).

Note that for ε = 0, the map Ha,b,ε reduces to the canonical Hénon-like map Ha,b. For the
convenience of notation we use H instead of Ha,b,ε .
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5.2.1 Basic properties

(i) The q-Hénon map H is obtained by the composition of the following transformations:

H1

(
x
y

)
=

( x
(1+ε−εx)

y

)
, H2

(
x
y

)
=

(
x

k1 − k2x2 − y

)
,

H3

(
x
y

)
=

(
x
by

)
, H4

(
x
y

)
=

(
y
x

)
,

where the constants k1 = b/a and k2 = 1/b, such that

H

(
x
y

)
= H4 ◦H3 ◦H2 ◦H1

(
x
y

)
.

(ii) The q-Hénon map H is injective and the inverse is H −1
(

x
y

)
=

(
(1+ε)y
1+εy

a−y2−x
b

)
.

(iii) The determinant of the Jacobian J(H ) of q-Hénon map is non-constant and the eigenvalues
of the Jacobian are real if b ≤ x2(1+ε)

(1+ε−εx)4 .

Proof. The Jacobian of the q-Hénon map is given by

J(H )

(
x
y

)
=

( −2x(1+ε)
(1+ε−xε)3 −b

(1+ε)
(1+ε−xε)2 0

)
(5.7)

The det J(H )(x,y) = b(1+ε)
(1+ε−εx)2 which varies w.r.t. the values of b,ε and x.

We solve det (J(H )−ξ I) = 0 for ξ to calculate the eigenvalue of matrix J(H ), where I is
the identity matrix of order 2. Then we get

ξ 2 +
2x(1+ ε)

(1+ ε − εx)3 ξ +
b(1+ ε)

(1+ ε − εx)2 = 0.

Solving, we obtain

ξ =
−(1+ εx)

(1+ ε − εx)2 ±
1

2(1+ ε − εx)3

√
x2(1+ ε)2 −b(1+ ε − εx)4

which is real if b ≤ x2(1+ε)
(1+ε−εx)4 .

5.2.2 Fixed points of q-Hénon map

To calculate the fixed points, we solve the system

H

(
x
y

)
=

(
x
y

)
,

which yields the following system of equations:

a− x2

(1+ ε − εx)2 −by = x (5.8)
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x
1+ ε − εx

= y (5.9)

From the above Eqs. (5.8) and (5.9), we obtain

εy3 +(1+bε)y2 +(1+b+ ε −aε)y−a = 0. (5.10)

For each ε 6= 0, the above cubic polynomial has three roots for y which can be real or imaginary
depending on value of ε. Once we have the value of y, then we get the fixed point (x,y) by Eq. (5.9).
For ε = 0, the Eq. (5.10) has two roots which yields to the fixed points corresponding to the canonical
Hénon map Ha,b.

Let Dε = (−0.2,0)∪ (0,0.5). Now we analyze the existence of fixed points of q-Hénon map
for each ε ∈ Dε . For the initial values of ε, we see that there are three fixed points, out of which
one is stable α1 (say), one is flip saddle α2 (say) and other one is regular saddle α3 (say). Further,
as the parameter ε varies, we observe that the stable fixed point coincide with regular saddle point
and consequently disappears. It implies that the bifurcation occurs at some parameter ε∗. Notice
that, when ε > ε∗, there is only one fixed point which is flip saddle α2. For a particular parameters
a = 1, and b = 0.04999999 by using numerical simulations we obtain the value of ε∗ = 0.1827. It is
illustrated in Fig. 5.1 by showing ε verses y− coordinate of fixed points. Let D∗

ε = (−0.2,ε∗)\{0},
be the domain of parameters where the map has three fixed points. For a given a = 1 and each
b ∈ (0,0.5), we have computed ε∗, which are shown in Fig. 5.2.
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Figure 5.1. : The y−coordinates of the fixed points of Ha,b,ε at a = 1, b = 0.04999999. (i) for ε ∈
(−0.2,−0.005); (ii) for ε ∈ (0.005,0.5).

5.3 Q-HÉNON CYCLES

5.3.1 Construction of the 2n-periodic points

We propose a method to construct superstable periodic points of period 2n of the map Ha,b,ε in the
parameter plane (a,b) for a given deformed parameter ε.
Method: Consider the q-Hénon map given by the Eq. (5.6),

Ha,b,ε(x,y) =
(

Fa,ε(x)−by,
x

1+ ε − εx

)
(5.11)
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Figure 5.2. : The value of ε∗ for each value of b ∈ (0,0.05) at a = 1.

where Fa,ε(x) = a− x2

(1+ε−εx)2 and 0 ≤ b ≤ 1, a > 0.

For b = 0 and given ε ∈ Dε , the map Ha,b,ε reduces to the degenerate q-Hénon map Ha,0,ε . Note
that Fa,ε(x) is an unimodal map with unique critical point at x = 0. One can easily compute the
sequence of parameters

{a21

0 ,a22

0 ,a23

0 , . . . ,a2n

0 . . .}

at which the map Fa,ε(x) has 2n-superstable periodic points. In general, a periodic point is
superstable if and only if the critical point of the map belongs to that periodic cycle. Therefore,
we obtain the sequence {a2n

0 } by solving the following polynomial

F2n

a,ε(0) = 0

for parameter a at fixed ε, where n = 1,2, . . . . Clearly this sequence {a2n

0 } converges to some a∗0,
at which the degenerate q-Hénon map undergoes the accumulation of period doubling. We have
computed the parameter values ‘a’ for different ε by solving the equation F2n

a,ε(0) = 0 numerically
using the MATLAB software. The sequence a2n

0 and corresponding Feigenbaum ratios for various ε
are given in Table D.1 of Appendix D. We can observe that the sequence of parameters a2n

0 converges
to 4.669201 . . . .

The next step is to vary the parameter b as bi+1 = bi +δ with δ = 10−9, and then compute
the superstable periodic points of the map H (x,y). This means, for each bi we have a vector
v2n

i =
(
x2n

i ,y2n

i ,a2n

i
)

in such a way that (x2n

i ,y2n

i ) is a periodic point of period 2n at the parameters
(a2n

i ,bi), and the trace of the Jacobian of (2n)th iteration of the map H is equal to 0. This leads to
the following equations:

H 2n
(

x
y

)
−
(

x
y

)
= 0 (5.12)
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Tr J
(

H 2n
(

x
y

))
= 0 (5.13)

Let X0 = x, Y 0 = y and (Xk,Y k) = H k(x,y).
For k ≥ 0, (Xk+1,Y k+1) can be written explicitly as function of x,y and a. Then we have

(
Xk+1

Y k+1

)
=

(
a− (Xk)2

(1+ε−εXk)2 −bY k

Xk

1+ε−εXk

)
(5.14)

We denote the partial derivatives of Xk as

Xk
x =

∂Xk

∂x
, Xk

y =
∂Xk

∂y
, Xk

a =
∂Xk

∂a
,

and the second partial derivatives as

Xk
xx, Xk

xy, Xk
xa, Xk

yx, Xk
yy, Xk

ya.

The Jacobian J for the first iteration (X1,Y 1) = H (X0,Y 0) is

J(X0,Y 0) =

( −2(1+ε)X0

(1+ε−εX0)3 −b
(1+ε)

(1+ε−εX0)2 0

)
=

(
K1 L1
M1 N1

)
(5.15)

The Jacobian J for the second iteration (X2,Y 2) = H 2(X0,Y 0) is

J2(X0,Y 0) = J(X1,Y 1)× J(X0,Y 0),

J2(X0,Y 0) =

( −2(1+ε)X1

(1+ε−εX1)3 −b
(1+ε)

(1+ε−εX1)2 0

)(
K1 L1
M1 N1

)

=

( −2(1+ε)X1

(1+ε−εX1)3 K1 −bM1
−2(1+ε)X1

(1+ε−εX1)3 L1 −bN1
(1+ε)

(1+ε−εX1)2 K1
(1+ε)

(1+ε−εX1)2 L1

)
=

(
K2 L2
M2 N2

)
.

Continuing in this way, we get the Jacobian J for mth iteration (Xm,Y m) = H m(X0,Y 0) is

Jm(X0,Y 0) =
m−1

∏
i=0

J(X i,Y i) =

(
Km Lm

Mm Nm

)
,

where(
Km Lm

Mm Nm

)
=

( −2(1+ε)Xm−1

(1+ε−εXm−1)3 Km−1 −bMm−1
−2(1+ε)Xm−1

(1+ε−εXm−1)3 Lm−1 −bNm−1
(1+ε)

(1+ε−εXm−1)2 Km−1
(1+ε)

(1+ε−εXm−1)2 Lm−1

)
.

The trace of the Jacobian J(H m) is given by

Km +Nm =
−2(1+ ε)Xm−1

(1+ ε − εXm−1)3 Km−1 −bMm−1 +
(1+ ε)

(1+ ε − εXm−1)2 Lm−1 (5.16)

58



Now rewrite the Eq. (5.12) as ϕ1, ϕ2 and Eq. (5.13) as ϕ3. Then we get

ϕ1 ≡ X2n −X0 = 0

≡ a− (X2n−1)2

λ 2 −bY 2n−1 −X0 = 0

ϕ2 ≡ Y 2n −Y 0 = 0

≡ X2n−1

λ
−Y 0 = 0

ϕ3 ≡ X2n

x +Y 2n

y = 0

≡ −2(1+ ε)X2n−1X2n−1
x

λ 3 −bY 2n−1
x +

(1+ ε)X2n−1
y

λ 2 = 0

(5.17)

where λ = 1+ ε − εX2n−1. Now, we solve the above equations by employing the Newton algorithm.
Let v2n

i (t) = (x2n

i ,y2n

i ,a2n

i ) be the initial vector such that (x2n

i ,y2n

i ) is a periodic point of period 2n with
parameter a2n

i . Then the updated vector v2n

i (t +1) is given by

v2n

i (t +1) = v2n

i (t)−
(
(J(ϕ))−1 ·ϕ(v2n

i (t))
)

(5.18)

where

ϕ =

ϕ1
ϕ2
ϕ3

 and J(ϕ) =

ϕ1x ϕ1y ϕ1a

ϕ2x ϕ2y ϕ2a

ϕ3x ϕ3y ϕ3a

 . (5.19)

Computation of J(ϕ) will involve not only the first partial derivative but also the second partial
derivatives of

(
X2n

,Y 2n). We calculate these derivatives recursively. Thus, we have

ϕ1x =
−2(1+ ε)X2n−1X2n−1

x

λ 3 −bY 2n−1
x −1,

ϕ1y =
−2(1+ ε)X2n−1X2n−1

y

λ 3 −bY 2n−1
y ,

ϕ1a =
−2(1+ ε)X2n−1X2n−1

a

λ 3 −bY 2n−1
a ,

ϕ2x =
(1+ ε)X2n−1

x

λ 2 ,

ϕ2y =
(1+ ε)X2n−1

y

λ 2 −1,

ϕ2a =
(1+ ε)X2n−1

a

λ 2 ,

ϕ3x =
−2(1+ ε)2

{
(X2n−1

x )2 +X2n−1X2n−1
xx

}
λ 4

+
2ε(1+ ε)

{
(X2n−1)2X2n−1

xx −2X2n−1(X2n−1
x )2

}
λ 4

+
(1+ ε)

{
λX2n−1

xy +2εX2n−1
x X2n−1

y
}

λ 3 −bY 2n−1
xx ,

ϕ3y =
−2(1+ ε)2

{
X2n−1

x X2n−1
y +X2n−1X2n−1

yx
}

λ 4

+
2ε(1+ ε)

{
(X2n−1)2X2n−1

yx −2X2n−1X2n−1
x X2n−1

y
}

λ 4

+
(1+ ε)

{
λX2n−1

yy +2ε(X2n−1
y )2

}
λ 3 −bY 2n−1

yx ,
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ϕ3a =
−2(1+ ε)2

{
X2n−1

x X2n−1
a +X2n−1X2n−1

ax
}

λ 4

+
2ε(1+ ε)

{
(X2n−1)2X2n−1

ax −2X2n−1X2n−1
x X2n−1

a
}

λ 4

+
(1+ ε)

{
λX2n−1

ay +2εX2n−1
a X2n−1

y
}

λ 3 −bY 2n−1
ax .

After the calculation of the above derivatives, we use the Eq. (5.18) to obtain the modified vector
v2n

i (t +1). Repeat this process until we get an accuracy 10−12 with the error term
e2n

i = v2n

i (t +1)− v2n

i (t) ≤ 10−12 at which one can obtain optimal vector v2n

i+1. Let w2n

i = v2n

i+1 be the
final modified vector obtained from the above method. Then w2n

i serves as initial vector for the
next increment bi+1 = bi +δ . If we consider the initial vector within the basin of attraction of the
period 2n orbit, one can easily find the orbit by repeated iterations. Then gradually change bi to
bi + δ with increment δ and compute the corresponding parameter a2n

i+1 using the above Newton
algorithm. For a given ε and for each bi ∈ (0,0.05), we calculate corresponding ai value such that
the parameters (ai,bi) forms a short curve in the parameter space (a,b). This curve is called as
“most attracting” curve. For different ε, these curves are denoted by γ2n,ε .

Next, we describe the above method as a computational algorithm for the calculation of
2n-superstable periodic points of q-Hénon map in the following steps::

(1) First, fix the parameter ε, period P = 2n (for n = 0,1, . . .) and the tolerance error E.

(2) Consider initial value as (x0,y0) = (0,0) and calculate a0 corresponding to b0 = 0 by solving
F2n

a,ε(0) = 0 for parameter a.

(3) Consider bi, start from i = 0.

(4) The initial vector is vi(t) = (xi,yi,ai) for bi.

(5) Take X0 = xi, Y 0 = yi, a = ai, and iterate H by P times to get X2n and Y 2n . Use these values
to calculate ϕ1 and ϕ2.

(6) Calculate the trace of the Jacobian J(H m(x,y)) using Eq. (5.16) at m = 2n, where K1 and L1
are given by the Eq. (5.15). From this we obtain ϕ3 and formulate the vector ϕ = (ϕ1,ϕ2,ϕ3)

t .

(7) Compute the matrix J(ϕ) using the partial derivatives, and evaluate inverse of J(ϕ).

(8) Calculate the updated vector vi(t +1) = vi(t)−
(
(J(ϕ))−1 ·ϕ(vi(t))

)
.

(9) If | vi(t +1)− vi(t) |≤ E then wi(t) = (x∗i ,y
∗
i ,a

∗
i ), otherwise go to step (5).

(10) For next increment of i, bi = bi−1 +δ .

(11) Use vi(t) = wi(t) as the initial vector for bi, and go to step (4). Then repeat the steps from
(4) to (9) until we obtain the optimal vector wi(t) = (x∗i ,y

∗
i ,a

∗
i ) corresponding to bi.

We have implemented this algorithm by using C program, and taking E = 10−12 and δ = 10−9.
The curves γ2n,ε are shown in Fig. 5.3 for the period 211, by considering various ε values. We observe
that as ε increasing from -0.2 to 0.5 then the curves γ2n,ε are shifting from the right to left side on
the parameter a scale. The parameters (a,b) on this curve γ2n,ε leads to a particular q-Hénon map
which has the superstable periodic orbits of period 2n. The accuracy of computations are verified
by calculating the difference between Feigenbaum ratio for the sequence of parameters a2n

i to the
actual Feigenbaum constant (δ = 4.669201609 . . .), which are shown in Table 5.1, for b = 0.04999999
and ε ∈ (−0.2,0.5). Note that, as n → ∞, the curves γ2n,ε converges to the Feigenbaum map γ2∞,ε
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Figure 5.3. : Superstable periodic point of period 211 for different values of ε.

which are shown here as an approximation of γ2n,ε , (n ≈ 11). On this approximated curve γ2n,ε the
q-Hénon maps undergoes a transition from periodic to chaotic behaviour. The attracting periodic
orbit disappears and obtain chaos for the value of parameter (a,b) that are lies on the right side of
the curve γ2n,ε .

Period → 29 210 211

ε =−0.2 8.5∗10−5 1.8∗10−5 3.9∗10−6

ε =−0.1 4.2∗10−5 9.1∗10−6 1.8∗10−6

ε = 0 2.9∗10−5 6.3∗10−6 1.3∗10−6

ε = 0.1 2.5∗10−5 5.4∗10−6 1.1∗10−6

ε = 0.2 2.4∗10−5 5.2∗10−6 1.1∗10−6

ε = 0.3 2.5∗10−5 5.4∗10−6 1.2∗10−6

ε = 0.5 3.4∗10−5 7.2∗10−6 1.5∗10−6

Table 5.1. : Accuracy of calculated Feigenbaum ratio to the actual Feigenbaum constant at
b = 0.04999999.

Let W|ε1,ε2| be the bounded domain between the curves γ2∞,ε1 and γ2∞,ε2 , where ε1,ε2 ∈
(−0.2,0.5), and ε1 > ε2. Let Ha,b,ε be a q-Hénon map such that the parameters a,b, ε lies within
the bounded domain W|ε1,ε2|. Clearly, the map Ha,b,ε exhibit periodic behaviour for ε = ε2 and it
exhibit chaotic behaviour for ε = ε1. In particular, if any map Ha,b,ε within the domain W|−0.1,−0.2|,
which is bounded by the curves γ2∞,−0.1 and γ2∞,−0.2, then the map Ha,b,ε has periodic behaviour
w.r.t. ε =−0.2, while the map has chaotic dynamics w.r.t. ε =−0.1. Therefore, as the value of ε
increases, the chaotic part of the q-Hénon map Ha,b,ε increases. For ε > 0, we obtain the chaos for
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parameter a which is prior to a∗ of canonical Hénon-like map Ha,b.

The Hénon-like map Ha,b(x) has simple dynamics for the parameter ‘a’ prior to the curve
γ2∞,0. The deformation map [x]ε is given by the Eq. (5.4) is a homeomorphism and hence it has
a simple dynamics. But, the composition Ha,b ◦ [x]ε which is q-Hénon map Ha,b,ε , has a chaotic
dynamics for the parameter a prior to the curve γ2∞,0, whenever ε > 0. This is similar to the
paradox observed in [Cánovas and Muñoz-Guillermo, 2019] for the deformed one-dimensional map.
Therefore, we conclude that the above discussion leads to the existence of Parrondo’s Paradox in
q-Hénon maps.

5.3.2 Location of periodic attractors on γ2n,ε of the q-Hénon map

We analyze the location of periodic attractors of the map Ha,b,ε on the curve γ2n,ε , where
ε ∈ D∗

ε ∪ (ε∗,0.5)∪{0}.

Case (i): When ε ∈ D∗
ε = (−0.2,0)∪ (0,ε∗), the map Ha,b,ε has three fixed points, in which α1 is

stable and it is coexists with flip saddle α2 and regular saddle α3. To illustrate the location of
periodic points, we choose ε = −0.1 and ε = 0.1 and plotted the periodic attractors, which are
depicted in Fig. 5.4 and Fig. 5.5 respectively. The zoom part around α2 are shown in Fig. 5.4(ii)
and Fig. 5.5(ii). Notice that all periodic points of period 211 exists near to the flip saddle α2.

Case (ii): When ε ∈ (ε∗,0.5), the situation is very different from the previous case as α1 and α3
disappears and now the map has only one fixed point α2. This case is shown in Fig. 5.6 by taking
ε = 0.3, and observe that the periodic orbits of period 211 exists near the fixed point α2.

Case (iii): When ε = 0, the q-Hénon map reduces to the canonical Hénon-like map, and there are
only two fixed points; α2 and α3.

(i) (ii)

Figure 5.4. : (i) The periodic orbits of period 211 (black colour) and the fixed points α1,α2,α3 (blue
colour) at ε =−0.1 and b = 0.035; (ii) zoom part around α2.
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(i) (ii)

Figure 5.5. : (i) The periodic orbits of period 211 (black colour) and the fixed points α1,α2,α3 (blue
colour) at ε = 0.1 and b = 0.035; (ii) zoom part around α2.
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Figure 5.6. : The periodic orbits of period 211 (black colour) and the fixed point α2 (blue colour) at
ε = 0.3 and b = 0.035.

We describe the stability of the periodic attractor using the unstable manifolds of fixed
points. The unstable manifold of the flip saddle α2 is denoted by W u(α2) and the unstable manifold
of regular saddle α3 is denoted by W u(α3), which are plotted in red (thick) and blue (thin) colours
respectively. The period-2 points of the map H are represented by P21 and P22. By tracing the
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unstable manifold of α2 around the periodic point P22, we generate a sequence of pictures showing
the fact that the unstable manifold of α2 converges to the period-2 point P22. This is illustrated in
Fig. 5.7 and Fig. 5.8 for ε =−0.1 and ε = 0.1 respectively. This dynamics occurs concurrently with
the stable fixed point α1 which describes the presence of coexisting attractor for each ε ∈ D∗

ε . The
convergence of the unstable manifold of α2 to other period-2 point P21 are shown in Fig 5.9 and
Fig 5.10 of Appendix D for ε = −0.1 and ε = 0.1 respectively. If we further increase ε as ε > ε∗,
such dynamics can not be observed because the two fixed points α1 and α3 will disappear and the
map has only one fixed point α2 which is the flip saddle. Note that, in the canonical case ε = 0,
the q-Hénon map has two fixed points α2 and α3, and the period-2 points P21 and P22, both lies on
the unstable manifold of α2.

Figure 5.7. : The unstable manifolds W u(α2) and W u(α3) of Ha,b,ε are shown by red and blue colours
respectively at ε =−0.1 and b = 0.038. P21 and P22 are period 2 orbits.
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Figure 5.8. : The unstable manifolds W u(α2) and W u(α3) of Ha,b,ε are shown by red and blue colours
respectively at ε = 0.1 and b = 0.035; P21 and P22 are period 2 orbits.
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Figure 5.9. : Unstable manifolds of the fixed points α2 and α3 shown by red and blue colours
respectively for ε =−0.1 and b = 0.038, black dots are period-2 orbits.
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Figure 5.10. : Unstable manifolds of the fixed points α2 and α3 shown by red and blue colours
respectively for ε = 0.1 and b = 0.035, black dots are period-2 orbits.
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5.4 HETEROCLINIC WEB AND RENORMALIZABLE MAPS

Let Ha,b,ε be a q-Hénon map on the curve γ2n,ε with ε ∈ D∗
ε , where D∗

ε = (−0.2,ε∗)\{0}.

Definition 5.4.1. Heteroclinic Web: The structure of unstable manifold of regular saddle α3 and
stable manifold of flip saddle α2 is called heteroclinic web.

Definition 5.4.2. Heteroclinic Tangency: We say the map Ha,b,ε has heteroclinic tangency, if there
exists a parameter b∗ on γ2n,ε , such that the unstable manifold of α3 touches the stable manifold of
α2 at some point s0. At this point s0, the local unstable manifold of α3 has the shape of unimodal
map. Further, the map Ha,b,ε undergoes heteroclinic bifurcation at b∗. This is illustrated for a
particular map, which is shown in Fig. 5.11.

(i) (ii)

Figure 5.11. : (i) Bifurcation moment of q-Hénon map at b∗ = 0.03000426 on γ2n,ε for ε = 0.1 and 28

period; (ii) Magnification around the point s0, where W u(α3) touches W s(α2).

We use the following algorithm to compute the heteroclinic bifurcation on the curve γ2n,ε .

1. For ε ∈ D∗
ε , we have the parameters (a,b) on the curve γ2n,ε such that the map Ha,b,ε has a

strongly attracting periodic orbit of period 2n.

2. For each b ∈ [0,0.05] on the curve γ2n,ε , we calculate the fixed points α1,α2 and α3, and
subsequently plot the heteroclinic web.

3. As we vary b value, one can observe that there exist b∗ such that the heteroclinic web of
Ha,b∗,ε has heteroclinic tangency. In other words, at that parameter b∗, the map undergoes
heteroclinic bifurcation.

4. Repeat the Step 1 to 3 to calculate the parameter b∗ corresponding to the heteroclinic
bifurcation, for different ε value.

By using the above steps we have computed the heteroclinic bifurcation of q-Hénon map on the
curve γ2n,ε , when ε = 0.1 and obtained b∗ = 0.03000426. It is shown in the Fig. 5.11. Further, the
heteroclinic bifurcation b∗ for different curves γ2n,ε associated with ε are computed and shown in
Table 5.2. We observe that the value of b∗ decreases as ε increases from -0.1 to 0.15. When ε > ε∗
the maps on the curve γ2n,ε have only one fixed point and therefore the heteroclinic bifurcation do
not occur.
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ε Heteroclinic bifurcation b∗
-0.1 0.03237592
0 0.03095192

0.05 0.03043535
0.1 0.03000426
0.15 0.02964028

Table 5.2. : Heteroclinic bifurcation for different ε.

Now, we give the topological definition of renormalization of q-Hénon map, which is inspired
from the work related to the renormalization of dissipative Hénon-like maps in [De Carvalho et al.,
2005], [Lyubich and Martens, 2011], [Chandramouli, 2008].

Definition 5.4.3. The q-Hénon map Ha,b,ε is said to be renormalizable if there are three fixed
points, in which one is stable, one is flip saddle, and other one is regular saddle such that the
unstable manifold of regular saddle intersects the stable manifold of flip saddle in a single orbit.

Definition 5.4.4. The q-Hénon map H is said to be nth-Renormalizable if

(i). The local unstable manifold of P2n−2 is denoted by W u
loc (P2n−2) intersects the local stable manifold

of P2n−1 is denoted by W s
loc (P2n−1) in a single orbit, where n ≥ 2. The points P2i are saddle points

of period 2i for i ≥ 1 and P1 = α2.

(ii). A piece of W u
loc (P2n−2) and a piece of W s

loc (P2n−1) form a disk Dn such that Dn is invariant under
H 2n.

(iii). int(H i(Dn)) are piecewise disjoint for i = 0,1, . . .2n−1.

The first renormalization of the map Ha,b,ε on the curve γ2n,ε is illustrated in the Fig. 5.12
by considering parameters ε = 0.1 and b= 0.01499. In which, W s

loc (α2) intersects W u
loc (α3) in a single

orbit. The second renormalization is shown in the Fig. 5.13, where W u
loc (α2) intersects W s

loc (P2) in
a single orbit. Here, W s

loc (P2) is the stable manifold of period-2 point P2.

Let γ̃2n,ε be a graph over [0,b∗] such that it is a subcurve of the γ2n,ε . Clearly, from the
Definition 5.4.4, the map Ha,b,ε is n−times renormalizable on the curve γ̃2n,ε . Therefore, as n → ∞,
the map Ha,b,ε on the curve γ̃2∞,ε is infinitely renormalizable for every ε ∈ D∗

ε . From the work
of [De Carvalho et al., 2005], we conclude that the map Ha,b,ε has a Cantor attractor OH and a
collection of disks D1 ⊃ D2 ⊃ D3 . . .Dn such that

• Dk ⊃ H 2k
(Dk).

• H i(Dn)∩H j(Dn) 6= /0 for i 6= j and i, j ≤ 2k.

• The disks Dk are bounded by a local unstable manifold of P2k−2 and a local stable manifold
P2k−1 , where the points P2i are saddle points of period 2i for i ≥ 1 and P1 = α2.

The orbit of Dn are denoted by Cn, where

Cn = {Dn,H (Dn),H
2(Dn) . . .H

2n−1
(Dn)}.

69



α3

α2

W
s (α2)

W
u(α3)

-3 -2 -1 0 1

-2

-1

0

1

2

(i)

α2

W
s (α2)

W
u(α3)

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
-1.0

-0.5

0.0

0.5

1.0

(ii)

Figure 5.12. : (i) First renormalization of Ha,b,ε on γ28,ε for ε = 0.1 at b = 0.01499; W s(α2) is the
stable manifold of α2 and W u(α3) is the unstable manifold of α3; (ii) Zoom part around
α2.
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Figure 5.13. : (i) Second renormalization of Ha,b,ε on γ28,ε for ε = 0.1 and b = 0.01499; W u(α2) is the
unstable manifold of fixed point α2 and W s(P2) is the stable manifold of period 2 point
P2; (ii) Zoom part.

This is referred as nth cycle. Therefore the Cantor set OH is

OH =
⋂
n≥1

2n−1⋃
i=0

H i(Dn).

So the Cantor set OH formed such that

C1 ⊃ C2 ⊃ C3 ⊃ . . .Cn ⊃ . . .OH .
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Then we have the following proposition:

Proposition 5.4.5. Let Ha,b,ε be any q-Hénon map with (a,b) ∈ γ2∞,ε and ε ∈ D∗
ε , then we have

Ha,b,ε is infinitely renormalizable. In particular, OH is a Cantor attractor.

Remark 5.4.6. The map Ha,b,ε is infinitely renormalizable only for ε ∈ D∗
ε but it fails for ε > ε∗.

5.5 BASIN OF ATTRACTION

The collection of all initial conditions in the phase space whose trajectories leads to the
attracting set is called basin of attraction of the set. The basin of attraction can also be a point at
infinity (in the sense that some initial conditions escape to infinity). We investigate the changes in
the basin of attraction of the maps Ha,b,ε on the curve γ2n,ε . For ε ∈D∗

ε , we know that the q-Hénon
maps have superstable periodic attractor of period 2n and a coexisting fixed point α1. Therefore
one can compute the approximation of basin of attraction.

Let B = {(x,y) : −l ≤ x ≤ l;−br ≤ y ≤ br} be the domain such that the fixed points α2 and α3
lie within the domain B. Suppose M is a grid of m×n mesh points in B such that M = {(xi,y j) : xi ∈
[−l, l]; y j ∈ [−br,br] ∀ 1 ≤ i ≤ m; 1 ≤ j ≤ n}. We compute the basin of attraction of the map Ha,b,ε by
iterating each mesh point. If the orbit of (xi,y j) leave the box B in a finite number of iterates then
we say that trajectory of (xi,y j) is escaping to infinity. In this case, we mark this point (xi,y j) with
red colour. If the orbit of (xi,y j) converges to the periodic attractor of period 2n, then mark (xi,y j)
as a blue colour otherwise the orbit of (xi,y j) converges to coexisting fixed point α1 then mark it
as a yellow colour. Note that the basin of attraction of the map does not cover the whole plane
and the reason is that most of initial conditions that are far from the attractor, either converge to
a coexisting fixed point or approaches to infinity.

The basin of attraction of Ha,b,ε for b = 0.0499 . . . is shown in Fig. 5.14 for various ε values.
The blue region indicates the basin of periodic attractor of period 2n, the yellow region indicates the
basin of coexisting fixed point α1 and the red colour represents the escaping region, where the black
points in the blue region indicates the periodic attractor. From the Fig. 5.14(i) and Fig. 5.14(ii),
we observe that the basin of Ha,b,ε contain three regions including the basin corresponding to
the periodic attractor, coexisting attractor α1 and escaping region. When ε = 0, it is the case
of canonical Hénon-like map and therefore the basin contains only attracting region and escaping
region, which is shown in Fig. 5.14(iii).

For ε ∈ (0,ε∗), the basin of Ha,b,ε do not contain the escaping region. It contains only two
regions, one is converging to the periodic attractor and other is converging to α1, it is illustrated in
Fig. 5.14(iv) and Fig. 5.14(v). This is an interesting phenomenon similar to the Lorenz system. To
further illustrate the basin of attraction in the region ε ∈ (0,ε∗), we plotted the basin of attraction
for different b ∈ (0,0.05) by choosing ε = 0.05 and ε = 0.15, which are depicted in Fig.5.15 and
Fig.5.16 respectively.

For ε > ε∗, the map Ha,b,ε do not have the coexisting fixed point, therefore the basin of
attraction has two regions, in which one is attracting towards periodic attractor and other one is
escaping to infinity. It is shown in Fig. 5.14(vi).

5.6 CONCLUSIONS

In this chapter, we have investigated the dynamical properties of q-Hénon map Ha,b,ε which
has a non-constant Jacobian. We proposed a method for computing the superstable periodic orbits
of the q-Hénon map on the parameter space for different deformed parameters. Using this, we have
constructed the “most attracting curve” denoted by γ2n,ε on the parameter space. As n → ∞, on the
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curve γ2∞,ε , the phase transition take place from simple to chaotic dynamics. We observed that as
the deformed parameter ε increases, the system become chaotic in the wide range of the parameter
space a. When ε > 0, the Parrondo’s paradox is encountered for the q-Hénon maps Ha,b,ε , as
the phase transition occurs earlier than the canonical Hénon-like map Ha,b. We also described the
location of the periodic attractor by tracing the stable and unstable manifolds of fixed points.

We discussed the concept of heteroclinic web, which is based on the structure of stable
and unstable manifolds of saddle periodic points. Varying b value on each γ2n,ε , we computed the
heteroclinic bifurcations using the heteroclinic web. We showed that for each ε ∈ D∗

ε on the curve
γ̃2∞,ε , all q-Hénon maps are infinitely renormalizable and having Cantor set as an attractor. Finally,
we have computed the basin of attraction of q-Hénon maps and observed that the q-Hénon map do
not have an escaping region for each ε ∈ (0,ε∗). This is an interesting property, which shows the
similarity of q-Hénon map with Lorenz system in which all trajectories are bounded.
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(i) ε =−0.2 (ii) ε =−0.1

(iii) ε = 0 (iv) ε = 0.1

(v) ε = 0.15 (vi) ε = 0.3

Figure 5.14. : Basin of attraction of q-Hénon map for period 256 and for different ε, where
b=0.04999 and (i) a = 1.705320951200358; (ii) a = 1.550975058042254; (iii) a =
1.478456522436630; (iv) a = 1.436441173331582; (v) a = 1.421663539980441; (vi)
a = 1.391750276903475.
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(i) b = 0 (ii) b = 0.01

(iii) b = 0.02 (iv) b = 0.03

(v) b = 0.04 (vi) b = 0.05

Figure 5.15. : Basin of attraction of q-Hénon map for period 256 and for different b at ε = 0.05.
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(i) b = 0 (ii) b = 0.01

(iii) b = 0.02 (iv) b = 0.03

(v) b = 0.04 (vi) b = 0.05

Figure 5.16. : Basin of attraction of q-Hénon map for period 256 and for different b at ε = 0.15.
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