Contents

		Page
Prefa	ce	i iii
Conte	Contents	
List o	f Figures	vii
LIST O	f Tables f Symbols	VIII ×iii
List o	f Abbreviations	XV
Char	oter 1: Introduction	1
1.1	Problem Statement	1
1.2	Aim and Research Objectives	3
1.5	List of Publications	4 5
1.5	Structure of the Thesis	6
Chap	oter 2: Literature Review	9
2.1	Power Quality	9
	2.1.1 Power Quality Disturbances 2.1.2 Power Quality Associated with RF Penetration	9
	2.1.3 International Standards for Power Quality	11 11
2.2	State of Art-Wind Energy Systems	12
	2.2.1 Challenges Associated with WE Penetration 2.2.2 Solutions Associated with WE Penetration	10 19
2.3	State of Art-Distributed-FACTS Devices	$\frac{15}{22}$
	2.3.1 Series DFACTS Devices	22
	2.3.2 Shunt DFACTS Devices 2.3.3 Shunt-Series DFACTS Devices	23
	2.3.4 Series-Series DFACTS Devices	23
0.4	2.3.5 Role of DFACTS Devices for Power Quality Mitigation	23
2.4	State of Art on Various Control Algorithms 2.4.1. Conventional Control Algorithms	24 25
	2.4.2 Adaptive Control Algorithms	26
2.5	Need of Additional DSTATCOM Infrastructure	30
	2.5.1 Limitations of Built-in Converter in DFIG based WE system	31 34
	2.5.3 Wind Energy Penetration Levels	35
	2.5.4 Unbalanced/Non-linear loads	35
2.6	Distribution Static Compensator (DSTATCOM)	36
2.8	Conclusions	39 39
Chan	oter 3: Enhancement of Wind Energy Penetration Levels using ADALINE-LMS	
	Control Algorithm	41
3.1	Introduction Choice of ADALINE-LMS Control Algorithm Over Other Existing Control Algorithms	41 41
3.3	System Configuration	41 42
3.4	Designing of ADALINE-LMS Algorithm	42
	3.4.1 Standard LMS Algorithm 3.4.2 Proposed ADALINE LMS Control Algorithm	43 11
3.5	Simulation Results and Discussions	49
	3.5.1 Case-1: Enhancement of WE Penetration Levels	49
	3.5.2 Case-2: Performance with NL Load at Rated Wind Speed	50 53
	3.5.4 Case-4: Effect of Variation in Grid SCR	53
	3.5.5 Case-5: Synchronization of DFIG with Rural Grid	54
3.6	Experimental Results and Discussions 3.6.1. Case 1: Enhancement of WE Penetration Levels	58 59
	3.6.2 Case-2: Performance with NL Load at Rated Wind Speed	50
	3.6.3 Case-3: Performance with NL Load at Minimum Wind Speed	60
	3.6.4 Case-4: Effect of Variation in Grid SCR 3.6.5 Case 5: Synchronization of DEIC with Rural Crid	61
	5.6.5 Case-5. Synchronization of DFIG with Nutal Glid	01

3.7 3.8 3.9	Harmonics and Power Flow Analysis Comparative Analysis Conclusions		
Cha	pter 4: Enhancement of Wind Energy Penetration Levels using Adaptive LMF		
4 1	Control Algorithm	71	
4.1 12	Introduction Merits of Adaptive LME Control Algorithm	(1 71	
4.2	System Configuration	72	
4.4	Designing of Adaptive LMF Algorithm	73^{-}	
	4.4.1 Standard Adaptive LMF Algorithm	73	
	4.4.2 Proposed Adaptive LMF Control Algorithm	74	
4.5	Simulation Results and Discussions	77	
	4.5.1 Case-1. Enhancement of Wind Penetration Levels 4.5.2 Case-2. Performance with NL Load at Rated Wind Speed	70	
	4.5.3 Case-3: Performance with NL Load at Minimum Wind Speed	80	
	4.5.4 Case-4: Effect of Variation in Grid SCR	81	
	4.5.5 Case-5: Synchronization of DFIG with Rural Grid	83	
4.0	Experimental Results and Discussions	83	
	4.6.1 Case-1. Enhancement of Wind Penetration Levels 4.6.2 Case-2. Performance with NL Load at Rated Wind Speed	86	
	4.6.3 Case-3: Performance with NL Load at Minimum Wind Speed	87	
	4.6.4 Case-4: Effect of Variation in Grid SCR	87	
4 7	4.6.5 Case-5: Synchronization of DFIG with Rural Grid	88	
4.7 4.8	Comparative Analysis	88 90	
4.9	Conclusions	91	
<u></u>			
Cha	pter 5: Enhancement of Wind Energy Penetration Levels using Adaptive	02	
51		93	
5.2	Merits of Delaved LMF Control Algorithm	93 93	
5.3	System Configuration	94	
5.4	Designing of Delayed LMF Algorithm	94	
	5.4.1 Standard Delayed LMS Algorithm	95 05	
	5.4.2 Dasic Designing of Delayed LINF Algorithm 5.4.3 Proposed Delayed LIMF Control Algorithm	95 96	
5.5	Simulation Results and Discussions	100	
	5.5.1 Case-1: Enhancement of WE Penetration Levels	100	
	5.5.2 Case-2: Performance with NL Load at Rated Wind Speed	101	
	5.5.3 Case-3: Performance with NL Load at Minimum Wind Speed	102	
	5.5.4 Case-4. Effect of Variation in Gru SCR 5.5.5 Case-5: Synchronization of DEIG with Rural Grid	103	
5.6	Experimental Results and Discussions	105	
	5.6.1 Case-1: Enhancement of WE Penetration Levels	105	
	5.6.2 Case-2: Performance with NL Load at Rated Wind Speed	106	
	5.6.3 Case-3: Performance with NL Load at Minimum Wind Speed	108 108	
	5.6.5 Case-5: Synchronization of DFIG with Rural Grid	100	
5.7	Harmonics and Power Flow Analysis	112	
5.8	Comparative Analysis	112	
5.9	Conclusions	113	
Chapter 6: Conclusions and Scope for Future Work			
6.1	Conclusions	115	
6.2	Scope for Future Work	116	
Refe	prences	117	
		111	