
2
Literature Survey

This chapter includes a detailed review of the existing works in the field of quality assessment
and enhancement of fundus images. The first Section 2.1 includes a detailed review of fundus IQA
algorithms which are divided into three categories as shown in Fig. 2.1. Section 2.2 includes the review
of fundus enhancement methods. The observed limitations of state of the art in both of the research
fields are discussed in Section 2.3. In the Section 2.4, a highlight of the contributions of the Thesis are
provided. Finally, Section 2.5 summarizes the chapter with conclusions.

2.1 SURVEY OF FUNDUS IMAGE QUALITY ASSESSMENT ALGORITHMS
On the basis ofmethodologies used, retinal IQA algorithms can be divided into three categories:

(i) Similarity based methods, (ii) Segmentation based methods, and (iii) Machine and Deep learning
based methods, as shown in Fig. 2.1. A concise information about these algorithms, described below in
chronological order, is provided in Tables 2.1, 2.2, and 2.3.

Fundus IQA Algorithms 

Similarity based Segmentation based Machine and Deep Learning based 

Figure 2.1 : Classification of fundus IQA algorithms

2.1.1 Similarity Based Methods
A few algorithms [Lee and Wang, 1999; Lalonde et al., 2001] reported in the literature use

similarity comparison of some of the attributes of the target image with those of a set of good quality
images. According to thorough study of the related literature, Lee and Wang [1999] were the first to
work on objectively assessing the quality of fundus images. Their proposed algorithm calculates the
similarity measure between the intensity histogram of the target image and the template formed from
a set of reference images. In order to have the reference template, the authors considered 20 high
quality fundus images. The similarity metric (C) is calculated by performing a convolution operation
between the intensity histograms of the reference template K and the input image H:

C=
255

∑
i=0

K(i)∗H(i). (2.1)

Here, K(i) is the coefficient of the ith kernel of the template histogram, and H(i) is the number of pixels
with intensity value of i. A higher value of C represents a higher correlation and similarity between
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K and H. Since K is obtained from high quality fundus images, a high value of C indicates high quality
of the target image. Since the histogram of an image is a global feature (it represents the number
of pixels in the image with a specific value), it does not contain information about the location of the
pixels. Hence, same histograms can be found for different images. Fig. 2.3 shows the histogram of two
different fundus images (shown in Fig. 2.2) where one is of good quality and the other one is of poor
quality. Certainly, a higher value of Cmay not always give a correct indication of the quality of the target
image.

To address this, Lalonde et al. [2001] proposed a new similarity-based fundus IQA algorithm.
The authors measured the similarity between the reference template and the target image on the basis
of the following two parameters: distribution of edge magnitudes and local intensity distribution. The
distribution of edge magnitude is derived by taking the squared distance between the edge magnitude
histogram of the reference image template and the target image. The local intensity distribution is
derived in four steps. The first step involves forming a reference grey-scale image using the set of high
quality images. Second, the input image is sub-divided into uniform regions using a histogram splitting
algorithm. In the third step, the histogram features are calculated for each sub-region in the target
image aswell as for the same sub-regions in the reference image. Finally, the summation of the squared
difference between the respective mean of the histogram of each sub-region is calculated. These two
derived features are used to determine the quality of the fundus image. For experiment purpose a set
of forty (40) fundus images has been used and divided into three categories of quality: good, fair, and
bad.

Figure 2.2 : Sample fundus images; (a) Good Quality, (b) Poor Quality.

Figure 2.3 : Normalized histogram of both fundus images

Advantages

• This methodology resembles to the RR-IQA methods (a set of features extracted from the
reference image is used for the quality estimation of target images) hence it can be useful in
real time applications like telemedicine, where target fundus images have been transmitted over
wireless networks.
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Table 2.1 : Summary of Similarity based fundus IQA algorithms. NS: Not Specified

Work Quality Parameter Categories # Images Accuracy (%)
of quality

Lee and Wang [1999] Intensity histogram 2 NS NS
Lalonde et al. [2001] Edge magnitude and 3 40 NS

• More reliable and efficient than NR-IQA methods.

Limitations

• It is difficult to create a universal set of good quality fundus images as reference.

• It is difficult to derive an efficient and effective set of features to represent the quality class.

• Such methods are sensitive towards different types of distortions.

• The histogram features that have been used in [Dias et al., 2014; Veiga et al., 2014] do not include
the structural characteristics of the fundus images.

• Such metrics do not effectively represent the Ophthalmologist’s perception of fundus image
quality.

• Less probability of efficient performance on cross data-set evaluation.

2.1.2 Segmentation based methods
Similarity-based methods use histogram features that do not explicitly include structural

information of the image. Since structural information are of diagnostic importance, some work
have been proposed based on the segmentation of the structures present in the fundus image.
Segmentation based fundus IQA algorithms generally involve a two step process. The first step is the
segmentation of structures and the second step involves its analysis, on the basis of certain parameters,
in order to estimate the fundus image quality. The first segmentation based fundus IQA was proposed
by Usher et al. [2003]. The authors have taken the pixel count of the blood vessels present in the
image as the quality indicator; the larger the count the better the quality. In this work, the blood
vessel extraction is achieved usingmatched filtering [Himaga et al., 2002] followed by a region growing
algorithm. Inmatchedfiltering, the input image is processedwith twoGaussian kernels. One is intended
to match regions of large blood vessels and another is intended to match the regions of small vessels.
Further, a region growing algorithm is used over the results of these filtering processes in order to
extract the blood vessels. Finally, the summation of the number of pixels belonging to the vessels is
used as the quality score. For the performance evaluation of the algorithm, specificity and sensitivity,
as given below, were used.

Speci f icity = a
a+c (2.2)

Sensitivity = b
b+d (2.3)
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where a and b are the number of correctly classified good and poor quality fundus images respectively,
c and d are the the number of wrongly classified good and poor quality fundus images respectively. On
thebasis of segmentation results over the set of 1746 fundus images, 84.3% sensitivity and95% specificity
have been reported. This was the first attempt in this direction with significant results. However, some
important issues have been addressed in the subsequent research works. Macula is an important part
of fundus images and the blood vessels around it carry significant diagnostic information. The size of
the vessels around the macula is comparatively very small and narrow. Hence, it has high chances of
getting affected by any distortion. In addition, the absolute and relative position of various structures
also play an important role while determining the fundus image quality.

Fleming et al. [2006] addressed these issues, and presented a segmentation-based algorithm
for fundus IQA. In this work, the overall image quality is determined by the following two parameters:
(i) clarity, and (ii) field definition. The clarity feature is obtained on the basis of the visibility of the blood
vessels around the macula region. The authors have segmented the blood vessels present around the
macular region of the image. Furthermore, algorithm also approximates the field definition on the basis
of the following parameters: location and diameter of the optical disc and visibility of the region within
the 2 disk diameters (DD) around the fovea. The value of one DD is manually estimated by analyzing the
optic disk diameter in good quality images, and set as 246 pixels. Overall 99.1% sensitivity, and 89.4%
specificity is reported over a set of 1039 images. Although the blood vessel density around the macula
provide a sufficient indication for the quality of fundus image, through this information it is difficult to
capture the presence of blur in the image, as blood vessels can be visible even if they are blurred and
may get added to the vessel pixel count.

Hunter et al. [2011] addressed the difficulties with the blurred image. The algorithm, visibility
of blood vessels near the fovea, that is in the macular region, is considered as the primary quality
indicator. In order to examine the presence of blur, the contrast of the vessels with the background
is calculated. The algorithm initially finds the location of the fovea by using an algorithm proposed by
Sinthanayothin et al. [1999]. Next, the segmentation of blood vessels is performed using a non-linear
filtering basedmethod termed as Tram-line algorithm [Hunter et al., 2005]. A metric (v) quantifying the
vascular information is calculated using the number of blood vessel pixels, their average distance from
the fovea, and contrast with the local background. Further, the information of contrast around the
region of the fovea is also quantified and used as second quality indicator (k). Finally, the overall quality
metric is derived by taking the product of both v, and k metrics. The authors categorized the fundus
images into 5 categories of quality. The performance of the algorithm is evaluated over a data-set of
200 images and 100% sensitivity and 93% specificity has been reported.

Kohler et al. [2013] also presented a quality evaluation algorithm for fundus images, based on
an assessment of blur by tracking the blood vessels. As the first step, the green channel of the fundus
image is extracted and divided into a number of fixed n× n size patches. In the next step, all the
anisotropic patches, discussed below, are selected and the singular value decomposition (SVD) of local
gradient matrix from each anisotropic patch is calculated. As mentioned in [Zhu and Milanfar, 2010], a
patch that can be modeled as:

p(xk,yk) = a1(xk− xc)
2 +a2(yk− yc)

2 (2.4)

is called as a quadratic patch, where p(xk,yk) is the pixel value of patch p at location k, (xc,yc) is the
center point, and a1 and a2 decide the slope. A quadratic patch is called anisotropic patch only when
a1 ̸= a2. The probability of erroneous results while selecting anisotropic patches is reduced by using a
proposedmetric termed vesselness measure. This vesselness measure is derived by analyzing the blood
vessel with the help of the Hessian matrix that is calculated for the green channel of the image. A
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local quality metric for each anisotropic patch is derived using the singular values obtained from the
SVD. Finally, the global quality metric (Qv) is derived by taking the addition of all the local metrics. The
authors have created manually distorted fundus images from the DRIVE [Staal et al., 2004] data-set by
modeling two distortions: (i) zeromean Gaussian noise, and (ii) blur using fixed size Gaussian filter. The
two well known full-reference (FR) image quality metrics PSNR and SSIM [Zhou Wang et al., 2004] are
used to determine the noise levels. The final results are shown by deriving the Spearman’s rank order
correlation of 0.89 and 0.91 between the Qv and both PSNR and SSIM.

Nugroho et al. [2014] presented a contrast assessment method in order to assess the fundus
image quality. The algorithm calculates the contrast of the blood vessels as a quality parameter. The
proposed algorithm starts with the pre-processing step which includes extraction of the green channel
from the RGB image followed by image enhancement. In the next step, it segments the blood vessel
area around the macular region using the match filtering method [Al-Rawi et al., 2007]. Finally, the
algorithm calculates the proposed contrast metric by using the difference between the intensity values
of pixels of blood vessels and background pixels using equation 2.5. In total 47 images from the
[Giancardo et al., 2012] database have been used for the experiment purpose. The reported accuracy
of the proposed work is 89.36%. The proposed contrast metric is

C =

∣∣∣∣∣1x x

∑
i=1

Ivi−
1
y

y

∑
i=1

Ibi

∣∣∣∣∣ (2.5)

where Iv and Ib represent the blood vessel and background pixel intensity value respectively. x and y
are the total number of selected pixels of blood vessels and background.

Welikala et al. [2016] presented a vascular segmentation based automated retinal image quality
assessment method for epidemiological studies. This work is presented with a prime objective of
epidemiological studies. It is different from the perspective of defining the diagnostic reliability of
retinal images. The authors mentioned that from a view of diagnostic suitability, the whole area of
a retinal image is expected to be clean and distortion free. However, in the case of epidemiological
studies, the prime focus is given to the vascular area present in the retinal image. As retinal vascular
morphology is oneof the important indicators of theoverall healthy vascular systemof thehumanbody.
It has the potential to early predict various epidemiological diseases like cardiovascular, diabetes, and
other systemic diseases.

Furthermore, the authors have developed a retinal image analysis system called QUARTZ
(quantitative analysis of retinal vessel topology and size). The QUARTZ system is used to segment the
blood vessels. Thereafter, an assessment of the segmented vasculature is performed based on three
global features: area, fragmentation, and complexity. The obtained features are used to further train
the support vectormachine classifier to classify the retinal images into two categories of quality: accept
and reject. The experiments are conducted on the randomly selected 800 images from the UK Biobank
data set.

Advantages

• These methods are based on the analysis of structural degradation in the image and effectively
represent the doctor’s approach for determining the fundus image quality.

• These methods can effectively perform over distortions like Color (Overexposed and
Underexposed), Uneven Illumination, Additive Gaussian noise, and Blur.

• They achieves high specificity and sensitivity under fixed assumptions like fix shape, size, and
location of the structures.
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Limitations

• The assumption behind segmentation based quality assessment is that poor segmentation results
reflect poor fundus imagequality. Here, segmentation algorithmswork under thefix assumptions
and criterion like fix shape, size, and location of the structures. Any changes to these parameters
may lead to the decreased performance while cross-data set evaluation.

• Segmentation algorithms are expected to give good results even in presence of different noises
and this in turn results into an erroneous quality assessment result. For example the Canny edge
detection algorithm used in [Fleming et al., 2006] reduces the effect of Gaussian noise. Therefore,
itmight not produce reliable and correct quality assessment results in presence of Gaussian noise.

Table 2.2 : Summary of Segmentation based fundus IQA algorithms. SN: Sensitivity, SP: Specificity, SC:
Spearman’s Correlation

Work Quality Parameter Categories # Images Accuracy (%)
of quality

Usher et al. [2003] Blood vessel density 2 1746 SN: 95, SP: 84.3
Fleming et al. [2006] Blood vessel pixel count 2 1039 SN: 99.1, SP: 89.4
Hunter et al. [2011] Visibility of blood vessels 5 200 SN: 100, SP: 93
Kohler et al. [2013] Blood vessel pixel count NA 58 SC: 0.89 with PSNR

SC: 0.91 with SSIM
Nugroho et al. [2014] Contrast of 2 47 89.36

blood vessels
Welikala et al. [2016] Blood vessel area 2 800 SN: 95.33, SP: 91.13

fragmentation, complexity

2.1.3 Machine learning based methods
Machine learning (ML) based fundus IQA algorithms classify the fundus images into predefined

categories of quality by learning from the samples. The process involves the following three steps:
(i) Feature Extraction, (ii) Training and validation of the model, and (iii) Testing. ML based fundus
IQA methods can be further classified into three categories based on the type of features extraction
approach: (i) Feature Extraction Based on Structural Analysis, (ii) Feature Extraction Based on Generic
Image Statistics, and (iii) Feature Extraction Based on Convolutional Neural Networks (CNN) Models. A
brief introduction of these algorithms is provided in the subsequent subsections.

2.1.3.1 Feature Extraction Based on Structural Analysis
Niemeijer et al. [2006] presented the first machine learning based framework for fundus IQA

by using the image structure clustering (ISC) method. The ISC method identifies the primary structures
present in the fundus image by creating the clusters of the outputs received from a set of multi-scale
filters. The authors have used a set of five rotation and translation invariant filter-bank at different scales
to perform the ISC in fundus images. A total of five clusters have been computed with the input image
using the filter-bank. Further, a set of features that contains the histogram of the ISC clustered pixels
and the rawhistogramof red R, G, and Bplaneswas extracted fromeach cluster. This feature set is used
to train four different classifiers: (i) support vectormachines (SVM)with radial basis kernel, (ii) quadratic
discriminant classifier, (iii) linear discriminant classifier, and (iv) k-nearest neighbor (k-NN) classifier. As
mentioned in the result section, most astounding precision is accomplished by the SVM classification
method with 99.68% accuracy. A total 1000 fundus images, taken from a proprietary data-set, have
been used for both training and testing in order to divide the fundus images into two categories of
quality: poor and good.
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Giancardo et al. [2008] mentioned that one of the limitations of all the previously discussed
works is their running time. To overcome this issue, the authors have presented a fast framework
for fundus image quality estimation. The proposed algorithm incorporates both the approaches of
segmentation and machine learning methodologies. Initially, the circular region of interest is localized
and segmented from the fundus image by using a circular mask. This circular mask is obtained from
the green channel of the image with the help of a region growing algorithm. Further, the vessel
segmentation process is implemented by using a method based on mathematical morphology [Zana
and Klein, 2001]. Further, local vessel density is calculated from the obtained segmented vessel area by
dividing the image into local windows. A total of 18 local polar windows have been formed and the area
of vessels for each window is calculated. Vessel density feature obtained from all the 18 local windows
are used to train and test the classifiers in order to classify the fundus images into two categories of
quality: Good and Poor. Classification is tested over two different classifiers: (i) SVM, and (ii) k-NN and
the results reported are more favorable in case of SVM. The proposed system is tested over 82 fundus
images with 100% sensitivity and 92% specificity.

Paulus et al. [2010] presented a system for retinal IQA by combining both structural information
and generic image quality statistics. The structural information includes visibility of optical disk and
blood vessels, and generic quality indicators contains information about the illumination and contrast.
The final feature set consists of three features: (i) clustering, (ii) sharpness, and (iii) Haralick texture
features. Structural information is determined by the clustering method, in order to compute the
clear differentiation between structures present in the image. It is determined by using the k-means
clustering method. Total ten manually segmented images of k clusters with fixed mean values have
been used for initialization of cluster centers. Now, for each input image, the cluster size and difference
between the values of each cluster mean is calculated. Further, generic quality features are quantified
by the sharpness metric and Haralick features [Haralik, 2020]. The sharpness metric is calculated
by using the gradient magnitude of the image. Haralick feature metrics are computed from the
co-occurrence matrix of the image that is intend to represent the texture features of the image. To
evaluate the illumination and contrast features, the authors have utilized three Haralick metrics mostly
known as texturemetrics. Finally, all the above-mentioned feature set is used to train the SVM classifier
in order to classify the fundus images into two classes: Good, and Poor. The proposed system is tested
over 301 fundus images and achieves an accuracy of 95.3%.

Another work in this category was proposed by Pires et al. [2012]. The proposed work is
influenced by the work of Fleming et al. [2006] that uses field definition of the fundus image as a
primary quality indicator. The authors have inspected the quality of fundus images by analyzing the
field definition and the level of blur present in the image. A set of 40 high quality fundus images
have been selected as reference images. The verification of field definition is performed by analyzing
the structural similarity between the reference image and the input image using the well-known SSIM
method. Detection of blur is achieved by calculating a set of features, namely: (i) area descriptor, (ii)
visual dictionary descriptor, (iii) blurring descriptor, (iv) sharpening descriptor, and (v) concatenation
of blur and sharpness descriptor. Area descriptor estimates the area of blood vessels within the image.
It is calculated using the well known Canny edge detection algorithm. Visual dictionary is built by
detecting the stable point of interests in the image using a well known method namely Speeded Up
Robust Feature (SURF) [Bay et al., 2006]. Further, in order to model the blur and sharpness measure,
the authors used the input image as the reference image. The input image is blurred and sharpened
progressively with different intensities and then the similarity measure between the input image and
its transformed versions is calculated. The assumption behind the idea is that a poor quality image will
be more similar to its distorted version rather than a good quality image. All the above derived set
of feature vectors have been used to train and test the SVM classifier for generating the final results.
Extensive experiments and results have been shown for the verification of field definition and blur
detection with 96% and 95.5% accuracy.
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Yu et al. [2012a] presented another linear regression based retinal IQAmethod. In the proposed
work the authors extracted various statistical features in order to train the regression model more
efficiently. In addition, fundus images are divided into four categories of quality. The algorithm consists
of two steps: (i) feature extraction and (ii) PLS regression. The feature extraction step involves the
extraction of four different features: (i) vessel density, (ii) histogram, (iii) texture features, and (iv) local
sharpness features. Vessel density feature is calculated by taking the ratio of the area of blood vessels
over the area of the field of view. Blood vessels are segmented by using a method based onmulti-scale
enhancement and second order entropy threshold [Yu et al., 2012b]. Mean, variance, skewness, and
kurtosis features areextracted fordetermining thehistogramfeatures. The texture features arederived
using five Haralick texture features: (i) second order entropy, (ii) contrast, (iii) correlation, (iv) energy,
and (v) homogeneity. Local sharpness features are determined by using a well-known method named
cumulative probability blur detection (CPBD). Each fundus image from the training data-set is assigned
a quality score by the retinal expert, and graded into four categories of quality: high, medium, low, and
reject. A linear relation is assumed between the derived features and the quality score. All the derived
features are considered as the independent variable andquality score as thedependent variable. Finally,
the PLS regression algorithm is implemented in order to estimate the overall quality. The proposed
algorithm is tested over a proprietary data-set of 1884 fundus images and achieved 95% performance
accuracy.

Anothermethod proposed in this category consists of both segmentation andmachine learning
methods. Katuwal et al. [2013] proposed a retinal IQA algorithm for fundus images by analyzing the
symmetry of retinal blood vessels. Initially, the stationary wavelet transform followed by median
filtering, dilation, and circular masking, is used to extract the retinal blood vascular structure. Further,
the image is horizontally divided into two equal parts, followed by dividing both halves into 10 equal
size vertical windows. Now, with the help of segmented vasculature, the following four features are
calculated: (i) global vessel density (GVD), (ii) local vessel density (LVD), (iii) difference between LVDs
of top and bottom local windows, and (iv) difference between sum of LVDs in top half and bottom half.
The GVD metric is the ratio of the number of blood vessel pixels and the total number of pixels present
in the image. The LVD metric is similar to GVD, calculated individually for each window. Finally, all the
derived feature vector set is used to train the SVM classifier. The proposed system divides the fundus
images into 5 classes with reported performance accuracy of 60%. A proprietary data-set of 88 images
has been used for the experiment.

Most of the methods discussed in this category are intended to divide the fundus images into
two categories of quality. However, a few of the methods [Lalonde et al., 2001; Hunter et al., 2011;
Kohler et al., 2013] attempted to classify the fundus images into more than two classes. The limitation
of binary classification based retinal IQA approach is that it is unable to effectively model the doctor’s
perception of fundus image quality, as it draws a strict boundary between the two classes. An average
quality fundus image that can be used for the diagnosis and closer to the boundary can be classified
as poor quality image and vice versa. In both the conditions, the performance of the CAD systems will
degrade. An IQAmethod that can provide a quality score via a number within a fixed range can provide
better insights into doctor’s judgment for the retinal image quality.

The next work in this category is one of the few works that produce a quality score for the
fundus images rather than simply classifying the fundus images into categories of quality. Yin et al.
[2014] presented a retinal IQA algorithmnamed as automatic retinal interest evaluation system (ARIES).
The proposed algorithm is divided into three steps: (i) retinal image identification, (ii) confirmation of
non-retinal images, and (iii) quality assessment. The first step involves the identification of the fundus
images. Bag of visual words is used to train the SVM classifier to classify the fundus and non-fundus
images. The second step is intended to suppress the effects of wrong classification results, as it is
believed that a fundus image with bad quality might be wrongly classified as a non-fundus image. A
reference fundus image template is created from a set of high-quality images. Then the SSIM values are
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calculated between each non-fundus image and the reference image. All the images with higher SSIM
values are considered as fundus images. Next, the quality assessment process involves training of the
SVM classifier with the following feature set: contrast ratio, blur ratio, entropy, blood vessel density.
Contrast is calculated as the ratio of the mean intensity value and standard deviation of pixels for each
color channel (R, G, B) individually. The blurmetric is calculated by themethod described in [Crete et al.,
2007], that is based on the intensity range of the pixels. Next, blood vessel density is derived as the
ratio of number of blood vessel pixels and total number of pixels in the image. Blood vessel pixels are
extracted by using bottomhat filtering algorithm. The bottom-hat filteringmethod involves performing
the morphological closing operation in the image followed by subtracting the original image from the
result. Finally, all the derived features are used to train the SVM classifier. Another contribution of
the work is that it does not directly use the SVM classification results. Rather, the output of the SVM
decision function is normalized to generate a quality score named as retinal image quality score (RQS).
The value of RQS ranges from 0 to 1, where a higher value reflects the higher fundus image quality. The
proposed system is trained and tested over 740 fundus images and achieved 95.4% accuracy.

2.1.3.2 Feature Extraction Based on Generic Image Statistics
To the best of our knowledge, Davis et al. [2009] represented the first retinal IQA algorithm that

includes human perception for the fundus image quality in the form of subjective quality scores. A total
of 400 artificially distorted images are created using Gaussian blur and intensity shift, from the images
taken from the Messidor [Decenciere et al., 2014] data-set. All images are assigned a quality score by
the ophthalmologists and divided into two classes of quality: (i) good and (ii) poor. The first step of the
algorithm is to divide the image into seven equal size blocks for each channel of the two color models:
RGB and CIE L*a*b* space. The CIE L*a*b space model is used because of its ability to comprehend the
relation between change in color values and visual properties. Blur, overexposure, and underexposure
are considered the primary artifacts to be observed in thework. They aremathematically demonstrated
by deriving a set of six statistical properties of the pixels: mean, skewness, entropy, spatial frequency,
and median. A linear relation is assumed between the features and the quality score. Features are
considered to be as the independent variable and quality score as the dependent variable. Finally, the
partial least square (PLS) linear regression model is trained to estimate the fundus image quality. The
proposed system has reported an accuracy of 99.3%.

Based on four generic quality indicators: color, focus, contrast, and illumination, Dias
et al. [2014] presented a retinal IQA algorithm (in 2014). The flow of the algorithm is as follows:
Pre-processing, feature extraction, and fusion of features for final classification. The algorithm starts
with a pre-processing step to exclude redundant background information and to retain only information
of retinal structures by applyingmasking and cropping operation over the image. Feature computation
includes an individual assessment of color, focus, contrast, and illumination features. Color assessment
classifies the color of a retinal image into three categories; bright, dark, and normal. It is implemented
by color indexing using the histogram back projection method presented by Swain and Ballard [1991].
Three color maps for all three categories are obtained by the statistical analysis of 11 bright, 7 dark, and
232 normal images. Next, the focus assessment step involves classifying the image into the blurred,
borderline or focused category. After converting the color image into grayscale, the focus is quantified
by applying the Sobel operator to the retinal image followed by a multi-level focus analysis algorithm.
Further, the contrast assessment algorithm classifies the retinal image into two classes: low and high.
It is implemented by using color indexing, similar to the color assessment algorithm. Further, the
illumination assessment is achieved by using the mean and variance properties present in the indexed
image. Finally, all the extracted features are used as input to train three classifiers: Feed-forward
back propagation neural network, radial basis function networks, and k-Nearest Neighbor. The most
satisfactory results have been reported for the feed-forward neural networks classification method. A
set of 2032 retinal images has been used for the experiment, that achieved sensitivity of 99.76%, and
specificity of 99.49%.
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Next, Veiga et al. [2014] presented a fuzzy classification based retinal IQA algorithm. The
algorithm examines the image sharpness and field of view (FOV) area in order to differentiate between
the lowandgoodquality fundus images. Initially, thegreenchannel of the fundus image is used toderive
the noisemask and FOVmask. The noisemask determines the unevenly illuminated zones present in the
image. The FOVmask is used for the segmentation of the area around themacula including optical disk.
Next, both noise and FOV masks are compared to substantiate if their common area is greater than a
predefined threshold. If the common area is less than the given threshold, then the image is considered
as a poor quality image and the algorithm terminates. Otherwise, the process enters the next step that
is focus evaluation. Focus analysis is done with three predefined focus operators: (i) wavelet-based,
(ii) moment-based, and (iii) statistics-based. The output generated from the focus operators is fed as
feature input to the fuzzy classifier to get the final result. A total of 1454 number of fundus images have
been used for the experiment, out of which 1200 were taken from the [Decenciere et al., 2014] data-set
and 254 from a proprietary data set. The reported accuracy of the proposed algorithm is 98%.

Another statistical quality parameters based retinal IQA method was proposed by the Yao
et al. [2016]. Primarily two quality parameters have been taken into consideration: (i) uneven
illumination, and (ii) blur. In order to quantify these parameters the following features have been
extracted: statistical characteristics of pixels, texture features, central statistical characteristics,
symmetry, wavelet features, and blur metric features. Mean, standard deviation, skewness, kurtosis,
and entropy parameters are calculated and used as statistical characteristics of the image. In order
to model the texture features, first, the co-occurrence matrix is derived from the image. With the
help of the co-occurrence matrix, the following features are derived: contrast, correlation, energy, and
homogeneity, and used as texture features. A central region in the image containing the fovea part
has been selected and all the above-mentioned features are calculated, which are termed as central
statistical characteristics. The symmetry of the image is predicted by calculating the mean values of 9
squared regions selected in the image. Furthermore, the analysis of the blur component in the image
is based on the idea that the presence of blur results in the loss of the high-frequency components
in the image. Using the Harr wavelet transform, low and high-frequency components are separated
from all the three color channels of the fundus images. All the statistical features discussed above are
derived for each of the three high-frequency components. Finally, a well known method based on the
cumulative probability of blur detection is used to extract the blur metric. The feature extraction step
collectively forms a 113-dimensional feature vector that is used to train the SVM in order to classify the
poor and good quality fundus images. The overall accuracy reported is 91.38%. All the experiments are
carried out over a proprietary data-set of 3224 fundus images.

In the next work under this category the authors supported the importance of retinal IQA
research with the fact that the portable and handy fundus imaging devices are more sensitive towards
distortions. Basedon the theoryofHumanVisual System(HVS) framework,Wanget al. [2016]presented
a machine learning approach for quality prediction of portable fundus images. Initially, the quality
scores are collected by the subjective evaluation from three ophthalmologists for a dataset of 536
images. It is important to note that the quality scores are collected for the following three quality
parameters on a scale of two: (i) uneven illumination, (ii) blur, and (iii) contrast. The proposed algorithm
involves three major steps: (i) Pre-processing, (ii) HVS based feature extractions, and (iii) Machine
learning. The pre-processing step separates the extraneous background information from the image
by using a circular mask. Next, the feature extraction step analyzes the presence of the following
three features in the image: (i) Multichannel sensation, (ii) Just noticeable blur (JNB), and (iii) Contrast
sensitivity function (CSF). Multi-channel sensation parameter is modeled to discern the illumination
and color features. Initially, the image is transformed from RGB space to HIS (H: hue, I: intensity,
S: saturation) space. Further, two masks: illumination (MI1), and color (MI2) are produced using
the thresholding method and combined to produce a single mask (MIROI). Finally, the multi-channel
sensation parameter is derived by taking the ratio of MIROI and MIs. Next, the JNB feature is derived
for determining the level of blur present in the image by combining awell known cumulative probability
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blur detection (CPBD)methodwith a vessel densitymap feature. The vessel densitymap is derivedusing
a morphological algorithm. Further, CSF is used to quantify the level of contrast present in the image.
The final quality prediction is performed using two different methods: decision tree based method and
machine learning based using the SVM. The decision tree-based structure simply compares the derived
valuesof all the threeparameterswith theground truthdata andpredicts thequality. In caseofmachine
learning, all the extracted features areused to train and test the imagesusing theSVM. It is reported that
the SVM has achieved much better results in comparison with decision tree method. Two proprietary
data-sets, namely: LOCAL1 and LOCAL2, and two public data-sets (DRIMDB andDRIVE [Sevik et al., 2014;
Staal et al., 2004]) have been used for the 536 fundus images for the experiment purpose.

Shao et al. [2018] presented a retinal IQA method based on the idea similar to [Wang et al.,
2016]. All the steps involved in [Wang et al., 2016] and the proposed method are the same except the
features that are used as quality parameters. To assess the quality, the authors have quantified three
quality parameters: illumination, naturalness, and structure. The illumination property is examined
by identifying three optimal threshold values in order to get the effects of dark, bright, and uneven
illuminations. Next, the naturalness feature is basedon the assumption that an imagemust look natural.
In order to quantify the naturalness index (NI), the authors have trained the multivariate Gaussian
regression model with high-quality fundus images. The NI of the input fundus image is determined
by testing the image over the trained regression model. Finally, the location of the optical disc is
used as structural information which is modeled with the help of Gabor filters. Fundus images have
been classified into two classes: accept and reject. With the help of the above-calculated features,
the authors have experimented two strategies for the quality prediction: (i) threshold based by using
the decision tree, and (ii) learning based by using SVM and dictionary learning (DL). The results section
reported that the algorithm performs best in the case of SVM and least in case of DL. A total of 4372
fundus images are used for the experiment, with reported sensitivity and specificity of 94.69%, and
92.29%, respectively.

2.1.3.3 Feature Extraction Based on Convolutional Neural Networks (CNN) Models
All the previously reported machine learning based fundus IQA algorithms are based on

the conventional hand-crafted feature learning methods. In recent years, the convolutional neural
networks (CNN) based automated feature learningmethod outperforms conventional feature learning
methods by a large performance gap. The automated feature learning has the ability to learn highly
optimized features, that increases prediction accuracy. The literature shows that in recent years deep
learning is successfully applied to the IQA framework for natural color images [Kang et al., 2014a; Kim
and Lee, 2017; Kim et al., 2018]. The first CNN based fundus IQA algorithm was proposed by Mahapatra
et al. [2016]. The proposed CNN architecture classifies the fundus images into two classes: gradable,
and ungradable. A CNN is trained with 101 fundus images obtained from Drishti data-set [Sivaswamy
et al., 2015] and the trained network is tested on different data-sets of fundus images to divide the
images. As 101 is a very limited sample to train a CNN, to overcome the issue the authors have divided
the images intomultiple overlapping patches of size 150x150 and labeled the same as the original image.
Due to unavailability of ungradable fundus images, the authors manually created them by modeling
three distortions: (i) Gaussian noisewithmean zero and varying variance, (ii) Salt and pepper noisewith
varying noise density, and (iii) Speckle noise. In the training phase, in the first layer of CNN architecture,
each patch is convolved with 20 kernels of size 7× 7 followed by max pooling of 4× 4 to reduce each
feature map into 36× 36. In the second layer of the CNN, all 20 feature maps are convolved with 50
kernels of size 5× 5 followed by again 4× 4 max pooling. It generates 1000 (50× 20) feature maps of
size 8×8. Finally, the last layer is the logistic regression for generating the final output and stochastic
gradient descent is performed with negative log likelihood as loss function. The proposed system
achieved 100% sensitivity, and 99.8% specificity.

One major limitation that exists in the previously presented work in this category is that it is
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modeledover a very small data-set. Typically, a CNNmodels requires a large amount of data for learning.
In viewof this, Yu et al. [2017] presented a newCNNmodel to classify the fundus images into two classes
of quality. The proposed model has two parallel steps for feature extraction: (i) Feature extraction
from Saliency maps and (ii) Feature extraction from CNN model. Initially, every fundus image is resized
to 256× 256 resolution. Thereafter the saliency maps are obtained using the frequency-tuned salient
region detection method presented in [Achanta et al., 2009]. Further the saliency maps are reduced to
32× 32 (1024× 1) blocks by taking the mean value from every 8× 8 non overlapping block. Next, the
CNN architecture contains a total of five convolution layers and one fully connected layers. The resized
fundus image is processed through the five convolution layers to generate a 4096×1 features vector.
Finally, the features obtained from the saliency map (1024×1) and CNN network (4096×1) are fused
to create a new and unique feature vector of size 5120×1. The obtained feature vector is further used
withmultilevel kernel SVMclassifier to classify the fundus images into good and poor categories. A total
of 5200 fundus images have been taken from the Kaggle dataset [?] for the experiment purpose and
achieved 95.42% accuracy. Similarly, Tennakoon et al. [2016] also presented a shallow CNNnetworkwith
four convolution and two fully connected layers for two-class retinal quality classification. Recently,
Zago et al. [2018] and Chalakkal et al. [2019] have used the virtues of pretrained model architectures
(GoogLeNet [Szegedy et al., 2015], AlexNet [Krizhevsky et al., 2017], and ResNet [He et al., 2016]) to
classify fundus images into two categories.

Advantages

• Machine learning based fundus IQA methods can be modeled easily with different data sources.

• Once a model is trained, it can produce fast and real-time predictions.

• These models has ability to improve its accuracy and efficiency over the time without any human
intervention.

• CNN based models showed best performance for IQA and outperforms the conventional IQA
methods.

Limitations

• Most of the machine learning algorithms are data hungry.

• Findinga sufficiently large fundus imagedata-set for quality assessmentpurpose is abig challenge.

• Difficult to train an efficientmodel in absence of required data-set. Consequently, it reduces cross
data-set performance.

• CNN based models are computationally expensive in comparison to other machine learning
algorithms.

2.2 SURVEY OF THE FUNDUS IMAGE ENHANCEMENTMETHODS
With the increasing need for telemedicine and advancement in portable image acquisition

devices, fundus image enhancement research has attracted the researcher’s attention in recent years.
However, it is important to mention that in comparison to the IQA, the volume of retinal enhancement
methods is significantly less. To the best of our knowledge, [Lin and Zheng, 2002] has proposed the first
retinal image enhancement method to increase blood vessel segmentation efficiency. The proposed
method estimates the background (i.e., the black area) of the image and subtracts it from the original
image. Let, a grey scale retinal blood vessel image I(x,y) with two components: blood vessels and
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Table 2.3 : Summary of Machine learning based fundus IQA algorithms divided on the basis of feature
extraction approach. GIS: Generic Image Statistics, DT: Decision tree, FC: Fuzzy classification,
ANN: Artificial neural network, SP: Specificity, SN: Sensitivity, MF: Membersip function.

Work Method Quality Parameter Categories Images Accuracy (%)
of quality

St
ru
ct
ur
al
A
na
ly
si
s
Ba

se
d Niemeijer et al. [2006] SVM Image structure 2 2000 99.86

clustering
Giancardo et al. [2008] SVM Blood vessel 2 84 SN: 100, SP: 92

density
Paulus et al. [2010] SVM Structural and 2 301 95.3

generic features
Pires et al. [2012] SVM Field definition 2 6696 96, 95.5

and blur
Yu et al. [2012a] PLS Vessel density 2 1884 96

histogram, texture
and sharpness

Katuwal et al. [2013] SVM Symmetry of 5 88 60
blood vessels

Yin et al. [2014] SVM Contrast, blur and 2 370 95.8
blood vessel density

G
IS
Ba

se
d

Davis et al. [2009] PLS Statistical features 2 2000 SN: 100, SP: 96
Dias et al. [2014] ANN Color, focus,contrast 2 2032 99.87

and illumination
Veiga et al. [2014] FC Uneven illumination 2 1454 98

focus
Yao et al. [2016] SVM Uneven illumination 2 3224 91.3

and blur
Wang et al. [2016] DT Uneven illumination, color, 2 536 94.52

and SVM blur and contrast
Shao et al. [2018] DT, DL Uneven illumination, 2 4372 92.39

and SVM naturalness property
and structural information

CN
N
Ba

se
d Mahapatra et al. [2016] CNN High level features 2 101 99.87

Tennakoon et al. [2016] CNN High Level Features 2 1852 98.27
Yu et al. [2017] CNN Fusion of features extracted 2 5200 95.42

from CNN and saliency maps
Zago et al. [2018] CNN Pre-trained Models 2 1036 97.70

Chalakkal et al. [2019] CNN Pre-trained Models 2 7007 91.75

background. It can be modeled as:

I(x,y) = Ibv(x,y)+ Ibg(x,y) (2.6)

here Ibv(x,y) and Ibg(x,y) represent the blood vessel and background component respectively. Now,
the blood vessel component can be derived by subtracting the background from the original image. The
estimation of the background is achieved using the neighborhood pixel intensity information. Another
work on gray scale retinal image enhancement was proposed by Feng et al. [2007]. The proposed
methoduses the contourlet transformmethod toestimate thenoisepresent in the imagebyperforming
manipulations on the derived coefficient. The enhanced retinal image is then obtained using the inverse
contourlet transform.
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ShomeandVadali [2011] proposedamethod for the contrast enhancementof the fundus images
using contrast limited adaptive histogram equalization (CLAHE) method. Chen et al. [2016] proposed a
method by first fusing the given fundus image with the background information and then applying on
it the fourth-order differential equation and median filter. The mentioned background information is
obtained by performing the normalized convolution operation to the given fundus images. In another
work, Zhou et al. [2018] have presented contrast and luminosity adjustment-based enhancement of
retinal images. The image’s luminosity is adjusted using a luminance gain matrix derived by applying
gamma correction over the value channel in HSV color space. Further, for contrast enhancement CLAHE
ShomeandVadali [2011]method is applied over the luminosity channel of L*a*b* color space. A data-set
of naturally distorted retinal images has been used for the performance evaluation of the proposed
model.

With the similar approach, [Gupta and Tiwari, 2019] have presented a method using quantile
based luminosity and contrast enhancement of fundus images. Initially, the image is divided into
quantiles, followed by applying the adaptive gamma correction with the weighting distribution
(AGCWD) method presented in Gupta and Tiwari [2016] for the enhancement task. Here, the quantile
valueswere defined as the numeric values, which divides the input data into an equal proportion. In the
AGCWD method, the gamma parameter is derived using the normalized probability density function
(pdf) of the image histogram. You et al. [2019] have proposed a cycle generative adversarial networks
(GAN) based model for the enhancement of fundus images. Cycle GAN is an unsupervised learning
method using the GANmodel that produces image output for each input image without paired training
samples. The convolutional block attention module (CBAM) Woo et al. [2018] method is used along
with the cycle GAN architecture to achieve the improved results. Authors have tested their model’s
performance over the images, taken from [Kaggle, 2015], that are artificially degraded using Gaussian
and Perlin noise. Ghosh et al. [2019] proposed stacked deep convolutional denoising auto-encoders
(SDCA) for fundus image denoising. SDCA is a stacked organization of multiple auto-encoders with
shared layers. Patch-based training is adopted with retinal images distorted with Gaussian noise of
different levels of standard deviation. In a similar approach, Biswas et al. [2020] used the virtues of
variational autoencoders (VAE) for the restoration of retinal images.

2.3 LIMITATIONS
This section discusses the limitations that exists in state-of-the-art in fundus IQA and

enhancement field separately.

2.3.1 Limitation of fundus IQA works
Aconsiderable effort hasbeenmadeby the researchers towards thedevelopmentof fundus IQA

algorithms. However, many fragments of stones of unresolved challenges and unanswered questions
exist in the path, that need to be removed. In the subsequent sub-sections, we discuss some of the
challenges in this field.

Interpretation of ophthalmologist’s perception: Throughout the years of evolution of image
acquisition and display devices, one factor that has not been changed is the HVS. Here, the expectation
of ophthalmologists from a good quality fundus image also remains the same. Due to its persistent
structural property, ophthalmologists assess the quality of a fundus image on the basis of some fixed
quality parameters: visibility of blood vessels & optic disc, blur, color information, etc. Therefore, an
efficient retinal IQA algorithmmust incorporate the relation between the physical change in the quality
parameters and the respective perceptual changes. In addition, this also gives rise to the challenge of
determining the relative importance of the quality parameters. Here, relative importance indicates the
contribution of a quality parameter while determining the overall fundus image quality.
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Figure 2.4 : Pie chart summarising the analysis of the fundus IQA algorithms in the literature.

Few subjective inputs: According to a study held at the University of Wisconsin-Madison, the
quality of a fundus image can be assessed using the following quality parameters: focus and clarity,
field definition, visibility of the structures (i.e., macula, optical disc, and blood vessels). However, there
exist only a few fundus IQA works that included a subjective opinion of a medical doctor about these
quality parameters. As mentioned above, inWang et al. [2016] the authors have included the subjective
evaluation of the fundus images using three generic quality parameters. However, the assessment of
structural properties is not included and generic parameters give global quality information. To get the
information about the local quality of an image, the evaluation of structural parameters is essential.
Also, the ratings were collected on a scale of only two numbers (0 and 1), which is too small to identify
the erroneous subjective inputs. Further, only three medical doctors participated in the subjective
assessment, which also limits the generalizability of the data-set. In order to get a better understanding
of the perceptual quality of a fundus image, it is essential to collect subjective opinions for both generic
and structural quality parameters.

Categoriesofquality and scopeof enhancement: In the caseofmedical images, the IQAprocess
aims to find out their diagnostic usefulness. Hence, fundus IQAmethods are used to classify the images
into different categories of quality. As shown in Fig. 2.4, most of the fundus IQA algorithms are
developed using machine learning-based classification algorithms, with the aim to classify them into
two categories of quality: Good and Poor. However, in real-time imaging scenarios, there also exists
a type of fundus images that neither fall into good nor in the poor category. For example, the fundus
images shown in Fig. 2.5 do contain visible artifacts, but still can be used for the diagnosis by themedical
doctors. Hence, it cannot be put into “Poor” category of quality. At the same time, these images might
lead towrong diagnostic results from an automated diagnosis system; hence also should not be labeled
as “Good”.

Recently fewmethods aiming at enhancing the visual quality of fundus images were published.
A fully automated diagnosis system requires an effective fundus IQA algorithm that can also determine
the requirement of enhancement. A binary classification based IQAmethodmay not be able to provide
such information. Hence, there must exist one more category of quality indicating an “average” or
“fair” quality fundus image.

2.3.2 Limitation of fundus image enhancement methods
The fundus image enhancement methods proposed to date can be broadly divided into two

categories: (i) histogram equalization based methods and (ii) deep learning based methods. The
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(a) Blur (b) Dark

(c) Uneven Illumination (d) Bright

Figure 2.5 : Examples of average quality fundus images: (a) Blur, (b) Dark, (c) Uneven Illumination, and
(d) Bright.

histogram equalization based methods try to enhance the image by redistributing the probability
distribution of image intensities. These methods are computationally simple for implementation.
However, they do not have any procedure to control the enhancement level that sometimes leads
to produce over enhanced fundus images. For deep learning based methods, with the distorted
images corresponding, clean images (ground truth) are typically required to compare how close the
restored image resembles the ground truth one. State-of-the-art methods use additive white Gaussian
noise [Ghosh et al., 2019], multiplicative Gaussian noise [You et al., 2019], and Impulse noise (salt and
pepper) [Biswas et al., 2020]. Since, such noises frequently occur, typically, in case of natural images.
Use of these noises are prevalent to examine the performance of denoising and quality assessment
methods developed for natural images. However, in fundus images, the existence of such noises is rare
[Kaggle, 2015]. Therefore, enhancement methods developed for retinal images over such noises are
of less significance and have limited scope in real conditions. Therefore, there is a requirement of an
enhancement method that can perform efficiently over the distortions frequently appearing in retinal
images.

It is well known that all the learning-basedmodels, especially CNNs, require a significantly large
amount of data-set. In the caseof natural images, quality assessment, denoising, andenhanceproblems
are being addressed using various publicly available data-sets [Ponomarenko et al., 2015; Sheikh, 2005]
containing a large amount of synthetically distorted images. Availability of these benchmark data-set
lead to the development of many efficient IQA algorithms like SSIM, MAD, and CNN-IQA [Zhou Wang
et al., 2004; Larson and Chandler, 2010; Kang et al., 2014a] etc. However, the medical image processing
research field mostly suffers from delays due to the unavailability of the relevant labled data-sets.
Creating such a large data-set ofmedical images is a challenging, laborious, and time-consumingprocess
withheavyfinancial constraints. [Fu et al., 2019a]madea commendable contributionby releasing a large
data-set EYE-Q [Fu et al., 2019a] to facilitate the fundus IQA problem. However, researchers areworking
on this problem for the last two decades but none of the works found prevalent due to the lack of a
benchmark data-set. The release of EYE-Q data-setwill definitely accelerate the research progress in the
field. However, for the retinal image enhancement problem, there are no relevant data-sets available
that can be used to train heavy deep learning based models. This problem leads researchers to work
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on the distortions, such as salt-and-pepper, and Gaussian noise, that are not strictly relevant to fundus
images.

2.4 CONTRIBUTIONS
In order to address the above discussed limitations in the field of fundus IQA and enhancement,

our contributions in this Thesis are as follows:

For Fundus IQA:

• A Fundus Image Quality Assessment (FIQuA) data-set of 1500 macula centered fundus images
has been created, with three categories of quality: Good, Fair, and Poor. To get a clearer
understanding of the ophthalmologists’ perception, for each image in the data-set, subjective
ratings in range of [0,10] have been collected for six quality parameters, both structural and
generic. To increase the generalizability of the data-set, subjective assessment is carried out by
fifteen accomplished ophthalmologists.

• Amultivariate linear regression-based neural networkmodel is proposed for the objective quality
assessment of fundus images. The proposed model, trained with the help of the six subjective
inputs, leads to achieving high classification accuracy.

For Fundus image enhancement:

• A total of five common degradations that appear in fair quality fundus images are identified as:
(i) Uneven-illumination over macula (MUI), (ii) uneven illumination over border region (BUI), (iii)
bright, (iv) dark and (v) haze.

• A total of 1000 good quality fundus images are randomly chosen as reference images from the
EyeQ data-set. From these images, a data-set of 14000 degraded images resembling to the
distortions mentioned above are created. Intuitively it is expected that the model trained to
nullify these synthetic artifacts could potentially nullify the similar artifacts found in the naturally
degraded fair quality images.

• AUNet based architecture Residual-Densely ConnectedUNet (RDC-UNet) is proposed for the task
of enhancement. Using UNet as backbone architecture, we tried to exploit the capabilities of
residual and dense connections for the enhancement task. The results obtained over synthetically
degraded fundus images show that performance of the proposed model is significantly better
than state-of-the-art methods.

• In case of natural images the type of distortion present is not known. Also, it is difficult to
categories it prior to enhancement due to the presence of multiple such distortions at a time.
To address this problem, an ensemble learning-basedmodel is proposed. Themodel is built using
the RDC-UNet trained individually for each of the five above mentioned distortions.

2.5 SUMMARY
• Most of the retinal IQAmethods are developed using machine learning algorithms and divide the

retinal images into two classes: good and poor.

• There two types of quality indicators for fundus images: (i) generic quality indicators such as
illumination, colour, and contrast, and (ii) structural quality indicators that indicate the visibility of
the structures
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• The limitations exist in the path of retinal IQA research are: (a)lack of understanding of
ophthalmologist’s judging criteria, and (b) the shortcomings of binary classification based
approaches on the use of image enhancement methods.

• The enhancementworks reported earlier are developed for distortions, mostly caused by additive
white Gaussian and salt-and-pepper noises. However, this poses a significant limitation about the
applicability of these methods as occurrences of such distortions are least likely.

In the next chapter, we have presented the first contributionmentioned towards fundus IQA. It
contains the peculiarities and specifications of the Fundus Image Quality Assessment (FIQuA) data-set.

…
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