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RDC-UNet: A UNet Based Model for Low Quality Fundus

Image Enhancement

In the previous chapters, we have discussed the importance of fundus IQA and enhancement as
a pre-processing step for a trustworthy diagnosis. Also, the significance of the “fair” category of quality
in fundus IQA was also discussed.

As mentioned in Chapter 4, the proposed fundus IQA method classifies a fundus image into
three categories of quality: good, fair, and poor. Here, good quality indicates fundus images having all
its structural features intact, leading to reliable diagnosis. Similarly, the fair category includes fundus
images with a few distortions that may cause erroneous results in automated diagnosis. On the other
hand, poor quality images are unusable for diagnostic purposes. An example of fundus images from
good, fair, and poor category is shown in Fig. 5.1. It can be observed that poor category images
can rarely be enhanced for diagnosis purposes. However, fair category images hold the scope of
enhancement to make them fit for a reliable diagnosis. In addition, recent advancements in image
acquisition technologies lead to capture of fundus images using portable devices [Bourouis et al.,
2014]. In the era of telemedicine [Shi et al., 2015], it provides an easy way to capture, store, and share
them with the ophthalmologist. However, due to ease of use, such devices are more susceptible to
various distortions in comparison to a conventional setup. Therefore such imagesdemands strict quality
assessment and enhancement if required before using the same in CAD system-based diagnosis.

As already discussed in Chapter 2, the limitations of the state-of-the-art fundus enhancement
methods are as follows:

• Histogramequalizationbased fundus enhancementmethods arenot effectiveover: (i) controlling
the level of enhancement and (ii) high intensity uneven illumination distortions.

• The use of Gaussian noise, Impulse noise, and Multiplicative noise in learning based methods are
not strictly relevant to the fundus images.

• No relevant data-set is available to benchmark the methods. Also, many challenges exist, like
manpower, time, and financial constraints, to create a large data-set of retinal images that are
sufficient to train heavy deep learning models.

In this chapter, we have addressed the above mentioned limitations and proposed a new
RDC-UNet model for fundus image enhancement. The structure of the rest of the chapter is as follows.
Section 5.1 contains the detailed implementation descriptions of the algorithms to create artificial
degradations that are closely resembling the naturally appearing degradations. Section 5.2 provide
details of the proposed RDC-UNet model, including a brief introduction to the UNet and Densely
connected residual blocks. Section 5.3 provides a detailed analysis of the experimental results. It
analyzes the performance of the proposed model over both the naturally and artificially degraded
retinal images. Also, the effectiveness of the obtained results is shown with the help of blood vessel
segmentation application. In Section 5.4 a detailed discussion over the insights of the proposed work
is presented. Finally, Section 5.5 concludes the chapter.
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(a) (b) (c) 

Figure 5.1 : Fundus images from three categories of image quality: (a) Good, (b) Fair, and (c) Poor.

5.1 IMPLEMENTATION OF FREQUENTLY OCCURRED DISTORTIONS
This section presents a detailed description of the proposed methods for the distortions that

frequently occur in fundus images. The identification of these distortions was done using the visual
assessment of EyeQ [Fu et al., 2019a] data-set. As already mentioned, the EyeQ dataset contains three
classes of retinal image quality. A careful study of the literature [Raj et al., 2019] and observation of
the EyeQ data-set led to the inference that improper luminance, uneven illumination, and haze are
frequently occurring distortions in retinal images. Improper luminance leads to highly bright or dark
fundus images, while uneven illumination mostly affects the macular and border areas of such images.
Here, the primary reasons behind the occurrence of these distortions are the following: (i) dust and dirt
on camera lenses, (ii) improper light conditions, and (iii) haze events [Raj et al., 2019]. To create these
distortions, a total of 1000 good quality imageswere randomly selected from the EyeQdata-set. Fundus
images hold a considerably large area of a dark background. Such redundant information adversely
affects the training accuracy. Therefore, all images were cropped to the fundus region boundary. The
boundary location was determined by finding the nearest pixel coordinates with a value close to zero
(i.e. black) from the centre of the image in each of the four axial directions. Additionally, each image
was resized to the dimension of 512× 512. The algorithms mentioned here were proposed to distort
these images resembling the distortions that appear naturally.

• MUI: The macular region is one of the areas affected by uneven illumination distortion, as shown
in Fig. 5.2 (a). As can be observed, it creates a dark region around the macula. It is worth
mentioning that most of the fundus images used for the experiments were macula-centred.
Therefore, the MUI distortion was created starting from the centre of the image, assuming
that the macula is located near the centre. The spatial location of the MUI could be anywhere
around the macular region and in any direction. Therefore, to increase the model’s robustness
towards the equiprobable spatial directions, a circular area around the macula is selected. A
darkness intensity (DI) value is chosen heuristically to induce a darkness effect in the region. To
gradually decrease the darkness effect away from the centre, the scaled DI value is subtracted
from each pixel I(x,y) within the region. The scaling factor was proposed as the ratio of the
square of the circle radius R and the squared Euclidean distance of the pixel from the centre,
as provided in Algorithm 1, and it decreased away from the centre. Furthermore, during the initial
experimentation, various DI values in the range of 60–150 were tested. However, after careful
discussion with ophthalmologists, DI in the range between 80 and 120 with an interval of 10 was
found to be satisfactory. Additionally, two radius values of 100 and 120 pixels were chosen to
increase the degradation variability. The selected radius values are 20-25% of the resolution of the
images. A total of 5000 samples of such distorted fundus images were created.

• BUI:Another commondistortion in the retinal image is the appearance of green colour shadeover
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Algorithm 1MUI

I : Input Fundus Image

R : Radius o f Circle : 100 and 120 pixels

DI : Darkness Intensity

procedureMUI(I) ▷MUI: Macula Uneven Illumination

r← row(I)

c← column(I)

center(x,y)← (r/2,c/2)

for i = -R to R do

for j = -R to R do

dist = i2 + j2

i f (dist < R2)

distNorm = dist/(R2)

scaleFactor = 1−distNorm

IN(x+ i,y+ j) = I(x+ i,y+ j)−DI× scaleFactor

end for

end for

return IN ▷ Output fundus image

Algorithm 2 BUI

I : Input Fundus Image

hI : Pixel value with highest f requency near border

gI : Heuristically chosen intensity value

procedure BUI(I) ▷ BUI: Border Uneven Illumination

r← row(I)

c← column(I)

center(x,y)← (r/2,c/2)

for i = 1 to r do

for j = 1 to c do

i f (I(i, j)> 0)

dist = (x− i)2 +(y− j)2

i f (x2 >= dist >= (x/5)2) ▷ Border Region

scaleFactor = dist/(x2 + y2)

Inew(i, j) = I(i, j)+ scaleFactor×gI

Inew(i, j) = min(Inew(i, j),hI)

end for

end for

return Inew ▷ Output fundus image
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Figure 5.2 : Samples of naturally distorted and corresponding synthetically distorted fundus images.
Here pair (a,f) represents MUI, (b,g) represents BUI, (c,h) represents bright, (d,i) dark, and
(e,j) haze.

the border region, as shown in Fig. 5.2 (b). It was noticed that its intensity is high near the border
and gradually decreases towards the centre. To create this distortion, the intensity values of the
pixels around the border region of such various naturally degraded fundus imageswere analysed.
Here, the border region was considered empirically within 50 pixels (about 10% of the image
resolution) distance from the fundus boundary. The histogram of the pixel intensities within the
selected region was obtained, and the pixel value (hI) with the highest frequency was identified.
Now, to implement the distortion, the scaled value of a heuristically chosen intensity (gI) was
added to each of the pixels within the fundus region, with the condition that no intensity value
becomes greater than hI. Here, the value of the scaling factor decreased away from the fundus
boundary, and it was calculated similarly to the method used previously for the MUI distortion.
It is to be mention that after a careful discussion with doctors, the gI value was set in the range
of 50 and 100 with an interval of 10. The detailed procedural steps are provided in Algorithm 2. A
total of 5000 samples of such distorted fundus images were created.

• Improper Luminance: In this case, the entire image region becomes highly bright or dark, as
shown in Fig. 5.2 (c) and Fig. 5.2 (d), respectively. Here the brightness and darkness are not
confined to a specific region, in contrast with the case depicted in Fig. 5.2 (b). To induce a
brightness effect, the mean value was added to each of the pixel intensities of the images, while
for darkness effect, the same was subtracted. Here, the overflow and underflow problems of
> 255 and < 0 were addressed by forcing the values to 255 and 0, respectively. A total of 1000
samples of both bright and dark fundus images were created.

• Haze: is the last important distortion included in this study, as shown in Fig. 5.2 (e). Initially, the
maximum value (v1) of input fundus image (I) was obtained, and then, a heuristically selected
haze intensity value (h) was added to it. Finally, the haze effect was obtained by multiplying the
intensity value of the input image I with a factor k = v1/(v1+h). In order to introduce variability
in the degradation, two different levels of (h) values, 300 and 400, were heuristically selected. A
total of 2000 such distorted fundus images were created.

Fig. 5.2 shows the resemblance between natural and synthetic degradations. Here, Fig. 5.2 (a), Fig. 5.2
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Figure 5.3 : Comparison Flow Chart of the state of the art fundus enhancement methods and the
proposed method.

(b), Fig. 5.2 (c), Fig. 5.2 (d), and Fig. 5.2 (e) represent the naturally degraded fundus images and the
images given in the second row, Fig. 5.2 (f), Fig. 5.2 (g), Fig. 5.2 (h), Fig. 5.2 (i), and Fig. 5.2 (j), are the
synthetically generated images.
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(b) Residual Dense Block

Xi-1 

Xi,1 Xi,2 Xi,3 

Xi 
Xi, LFF 

Dense Connections 

Figure 5.4 : Architecture of (a) residual block with single skip connection. Here, Oi represents the
output obtained from the ith layer, and (b) residual dense block (RDB) with 3 conv layers.
For an ith RDB block, Xi−1 and Xi represent the input and output, and Xi,n represents the
nth conv layer. Xi,LFF represents the reduced feature map obtained after applying the 1×1
conv layer. Here, LFF: local feature fusion.

5.2 PROPOSEDMODEL
In our proposedmodel, the merits of UNet and residual dense blocks (RDB) containing residual

and dense connections are exploited for the effective enhancement of fundus images. A visual
comparison between the previous fundus enhancement works and the proposed model is illustrated
in Fig. 5.3. It can be observed that the proposed model addresses the two major limitations of the
previous works: (i) absence of a controlling factor in HE basedmethods and (ii) effectively handling the
presence of frequently appearing distortions using CNN basedmethods. This section contains a precise
introduction of the proposed RDC-UNet model.
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Figure 5.5 : Architecture of the proposed fundus image denoising model. RDB: Residual Dense Block,
d: Depth of the feature map at each layer of the network model.

5.2.1 Preliminaries
• UNet: Ronneberger et al. [2015] proposed a CNN based model for medical image segmentation

called UNet. It is one of the most successful CNN models for medical image segmentation
problems. UNet mainly consists of three sections: encoder, decoder, and bottleneck. The
encoder section performs the feature extraction process similar to other classification models
such asAlexNet [Krizhevsky et al., 2017], DenseNet [Huang et al., 2017], etc. The feature extraction
encoder part helps in capturing the contextual information corresponding to the output. For this,
it performs two 3x3 convolutions followed by down-sampling using a pooling layer, repetitively.
The second part is the decoder that performs the task of localising the captured features and then
using the up-sampling operation to map it to the desired output. Here, after each up-sampling
operation, the feature map is concatenated with the same scale of the channel corresponding
to the encoder. Bottlenecks are the CNN blocks that make a model learn the compressed
representation of the input data. The objective is to carry only such useful information that is
sufficient for reconstructing the input image.
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Figure 5.6 : Architecture of the proposed ensemble model built using the proposed RDC-UNet
architecture (shown in Fig. 5.5). Here, d indicates the depth of the feature map at each
layer of the network model.

Table 5.1 : Information of the number of images in each distortion category along with its train and test
split.

Distortion # of Images Train Test

MUI 5000 4000 1000

BUI 5000 4000 1000

Haze 2000 1600 400

Bright 1000 800 200

Dark 1000 800 200

• Residual and Dense Connection: Residual and dense connections are widely used to facilitate the
vanishing gradient problem. The residual neural network uses the skip connections by re-utilising
the weights from the previous layer for this purpose. In a typical residual block, the output of the
current layer gets added to the output of its subsequent layer. A residual block with a single skip
connection is shown in Fig. 5.4 (a).

On the other hand, a densely connected network block has a direct connection between each
layer and all other layers in the forward direction, as shown in Fig. 5.4 (b). It shows that all the
feature maps obtained from the previous layers are utilised as input for every subsequent layers.
Unlike ResNets, instead of summation, dense networks concatenate the obtained feature maps.

• RDBs: The RDB [Zhang et al., 2018], illustrated in Fig. 5.4 (b), is one of the essential building
blocks of the proposed RDC-UNet network architecture. RDBs are used to extract the significant
local features usingdensely connected convolutional layers. It has three components: contiguous
memory (CM) mechanism, local feature fusion (LFF), and local residual learning (LRL). It enables
a direct connection from the previous RDB to each layer of the current RDB. This setting of
connections is termed as the CM mechanism. For a ith RDB, let Xi−1 and Xi represent the input
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and output respectively. Then the output Xi,n derived from the nth convolutional (Conv) layer of
the ith RDB can be represented as follows:

Xi,n = δ (Wi,n[Xi−1,Xi,1Xi,2.........,Xi,n−1]) (5.1)

Here, Wi,n represents the weights of the nth Conv layer, and δ indicates the ReLU activation
function. The concatenation of the feature maps derived by the (i− 1)th RDB is expressed as
[Xi−1,Xi,1Xi,2.........,Xi,n−1]. It enables the architecture to extract the local dense features. Further,
LFF is used to reduce the number of features derived after the concatenation operation. It applies
a 1×1 conv layer to the concatenated features derived previously, as given below.

Xi,LFF =Ci
LFF([Xi−1,Xi,1Xi,2.........,Xi,n−1]) (5.2)

Here, Ci
LFF represents the conv layer on ith RDB. Further, LRL is introduced in the RDB to further

improve the information flow by adding skip connections.

5.2.2 Proposed RDC-UNet for Fundus Image Denoising
For the denoising task, the incorporation of both global and local information is highly beneficial

[Park et al., 2019]. The proposed residual densely connected UNet (RDC-UNet) model is an enhanced
version of standard UNet architecture proposed for the medical image segmentation task. The
RDB block in our proposed architecture effectively facilitates abundant local features extraction and
fusion. Additionally, unlike UNet architecture, based on the local features, we were able to construct
hierarchical features due to the presence of shortcut connections between the different layers in RDB
blocks. We also apply global residual learning [He et al., 2016] in the proposed architecture between
the input and final output block to generate output images by pixel-wise addition of learned residual
information to the input images. Like UNet, the RDC-UNet model has three sections: encoding,
decoding, and bottleneck. A detailed architecture of the RDC-UNet is shown in Fig. 5.5. Two 3x3
convolutions, ReLU activation [Nair and Hinton, 2010], followed by a max-pooling layer, were used at
every stage in the encoding section. In the decoding section, transposed convolution [Dumoulin and
Visin, 2016] was used, followed by a concatenation operation with the feature map obtained from the
corresponding encoding section. Two 3x3 convolutions were further performed over the feature map
obtained after the concatenation.

The lowest bottleneck level is considered one of the most crucial parts of the architecture. It is
useful in the extraction of features that capture non-local image information. However, in the primitive
UNet model, the bottleneck layer couldn’t make full use of the hierarchical features, obtained from the
previous layers, using simple convolution. Because of this, the accuracy and effectiveness of the model
decreases. As a result of this drawback, we propose a residual densely connected UNet architecture
for the task of denoising. In the proposed model, we used a series of RDBs in the bottleneck layer for
extracting local dense features. After that, the extractionof global featureswas doneby fusing features
fromall RDBs. This helps in exploiting hierarchical features available in a global form. Moreover, a global
residual connectionwasmadebetween the initial andfinal block, as shown in Fig. 5.5. It helps in creating
a smooth flow of gradient in the overall network. We tried various architectures by varying the number
of convolutional layers in the RDB and the number of RDBs in the overall architecture. The best setting
was foundwith three convolutional layers in RDB and five RDBs in the overall architecture. The number
of filters at each level can be observed from Fig. 5.5 itself.

The RDC-UNet is trained in a supervisedmanner for each of the individual distortions, explained
in section 5.1. However, in the case of naturally distorted fundus images, it is highly challenging to
identify the exact typeof distortionpresent in the image. Furthermore, there canbemultiple distortions
present in the image. To address this challenge, we utilised a popular machine learning concept
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called ensemble learning [Liu and Yao, 1999]. The objective of ensemble learning is to achieve higher
prediction results by combining multiple models. A new multi-channel CNN is proposed that leverages
the advantages of ensemble learningby combining each individually trainedRDC-UNet, illustrated in Fig.
5.6. This architecture consists of multiple convolution blocks that take concatenation of predictions
from the five distortions models. It has two convolutional blocks with a number of feature maps of
varying sizes. The overall model is trained in two stages. Firstly, the five models are trained individually
using the same pre-processing operation, and later, the ensemble model is trained with the predictions
obtained from the model in the first stage of training.

5.2.3 Implementation Details
• Pre-processing: All the images before training were normalised in the range of [-1,1]. The images

were normalised using the following formula:

In =
I− Imax/2

Imax/2
(5.3)

Here, In and I represent the normalised and a single channel (RGB) of the input fundus image,
respectively. Also, Imax/2 represents the half of the maximum possible intensity. Here, for each
channel(8-bit) of a RGB image, the value of Imax/2 would be 127.5.

• Loss Function: For training and validation, a hybrid loss functionwas derived using the sumof two
loss metrics: mean absolute error (MAE) and structural similarity index (SSIM) [Zhou Wang et al.,
2004] loss. Themeanabsolute error (MAE) is better at training aCNNmodelwith reduced average
error between the input andpredication. Therefore, to train a CNNmodel for imageenhancement
tasks, it is beneficial to useMAE loss function to predict the enhanced image statistically (in terms
of pixels values) close to the reference image. On the other hand, the SSIM is a perceptual metric
that quantifies image quality degradation by analyzing the structural change occurring in the
image due to some processing. So, for distilling the advantage of both loss functions for the
image enhancement, we used summation of losses for training. It resulted in an image which
appears to be of higher quality.

The mathematical representation of the MAE is as follows:

LMAE =
1

m×n

m

∑
i=1

n

∑
j=1
|(x̂(i, j)− x(i, j))| (5.4)

Here, x(i, j) and x̂(i, j) represent the input and the enhanced image, respectively, with a resolution
of m×n. The MAE is preferred over the mean square error (MSE) because MSE is prone to being
affected by outliers or wrong predictions, as it gives highweightage to large errors in comparison
to small errors.

Next, SSIM is a quality assessment metric proposed by Wang et al. [Zhou Wang et al., 2004]. It
quantifies the level of degradation in the image by extracting its structural information. The SSIM
score between a reference image (r) and an enhanced image (p) can be represented as SSIM(r, p).

SSIM(r, p) =

(
2µrµp + x1

µ2
r +µ2

p + x1

)
.

(
2σrσp + x2

σ2
r +σ2

p + x2

)
(5.5)

Here, µr and µp are the mean values, σr and σp represent the standard deviation values, and σ2
r

and σ2
p is the covariance values of r and p, respectively. Additionally, x1 and x2 are the small

positive constant values added to ignore the numeric instability. It generates value in the range
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of (0,1], where a higher value indicates better quality and a lower value vice versa. Therefore, the
loss value derived using SSIM can be given as follows:

LSSIM = 1−SSIM(r, p) (5.6)

finally the overall loss (L) is derived using the summation of LMAE and LSSIM :

L = LMAE +LSSIM (5.7)

• Computational Set-up: All the models were trained on a computer system of 2.0 GHz CPU with
NVIDIA V100 GPU of 32 GB memory. The adaptive moment estimation (ADAM) [Kingma and Ba,
2014] optimisation method was used for error minimisation with a learning rate of 5×10−4. The
ADAM was performed for 1000 epochs with a mentioned batch size of 24 images during the
training process and inference time was 0.083 sec. Moreover, the weight decay regularisation
method with a value of 10−6 was applied after every 100 epochs. All deep learning models were
implemented using the Python programming language and Keras library [Chollet, 2015]. The
pre-processing (resize and crop) and data loading taskswere achieved using the PIL Image library.
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Figure 5.7 : Visual comparison of the results obtained from the proposed model using state-of-the-art
methods with synthetically distorted images.

5.3 RESULTS AND ANALYSIS
5.3.1 Data

As mentioned earlier in section 5.1, a total of 1000 good quality fundus images were randomly
selected as reference images. Thereafter, a total of 14000 manually distorted imageswere createdwith
the distortions mentioned earlier in the paper. To train and test the proposed denoising model, the
images were split into an 80:20 ratio in a disjointed manner. Table 5.1 contains information about the
number of images belonging to each distortion category and their respective training and testing split.
In addition to the synthetically generated data-set, the performance of the proposed model illustrated
in Fig. 5.6 was also tested over a total of 1000 naturally distorted fair quality fundus images taken from
the EyeQ data-set.
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Figure 5.8 : Performance of the proposed ensemble model in terms of visual clarity. Here (a) and (c)
represent naturally distorted images containing multiple distortions, and (b) and (d) are
the corresponding enhanced images.

5.3.2 Evaluation Methodology
The performance evaluation of the proposedmethodwas carried out on both synthetically and

naturally distorted fundus images. In the case of synthetically degraded fundus images, for every input,
a corresponding clean image was present. Therefore, full reference image quality assessment (FR-IQA)
methodswere applied for the performance evaluation. We employed the twomostwidely used FR-IQA
metrics [Bosse et al., 2016; Kim and Lee, 2017], namely, peak signal to noise ratio (PSNR) and SSIM. Here,
PSNR determines the ratio between the maximum power (pixel intensity) of the reference image and
corrupted image. SSIM quantifies the quality of an input image by analyzing its structural similarity with
the reference image. The case of a natural image falls under the category of no-reference (NR) IQA.
Therefore, we employed aMvRCNNmodel [Raj et al., 2020] for fundus IQA for the quality evaluation of
the enhanced output images. Additionally, for a comparative analysis, the performance of nine widely
used and state-of-the-art methods were also included in this study. Out of nine, four are histogram
equalisation-based methods ESIHE [Singh and Kapoor, 2014], CLAHE [Shome and Vadali, 2011], CRIE
[Zhou et al., 2018], and SRLLIE [Li et al., 2018], and the other five are deep learning based methods
DnCNN [Zhang et al., 2017b], LightNet [Li et al., 2018], UNet [Ronneberger et al., 2015], DSRN [Das et al.,
2021], and A-UNet [Oktay et al., 2018].

Further, to demonstrate the effectiveness of the proposed methods, application-based
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Figure 5.9 : Comparative performance of RDC-UNet based ensemble model with state-of-the-art
methods in terms of visual observation over naturally degraded fundus images.

experiments were also conducted. These included the analysis of the effectiveness of the proposed
model using the blood vessel segmentation task. For this purpose, the DRIVE [Staal et al., 2004] image
dataset was chosen, which provides ground truth for the annotations of the blood vessel. The standard
UNet model was taken as a baseline method for the evaluation.

5.3.3 Performance analysis over synthetically degraded fundus images
The PSNR and SSIM values of the proposed RDC-UNet model, together with these methods,

have been provided in Table 5.2. In addition, an illustration of the performance of the proposed model
with these methods has also been shown in Fig. 5.7. The individual performance of the first three
methods over dark degradation is relatively better in comparison to other degradations. However,
in terms of overall performance, these methods are not satisfactory, and the same can be observed
from Table 5.2. As mentioned earlier, histogram equalisation-based methods have no mechanism to
control the level of enhancement. Due to this, they do not work effectively on the images containing
significantly dark or bright regions. Further, the DnCNN model extracts the noise component from
the degraded image and then subtracts from it. It is useful in extracting the noises such as the
Gaussian that follows normal distribution. In case of uneven illumination, it is a challenging task to
extract the noise component. This is especially so when image contains dark or bright regions confined
to particular regions. The results obtained from the DnCNN are better in comparison to histogram
equalisation-basedmethods but not satisfactory. The accuracy of the basic UNetmodel was also tested
and reported the Table 5.2. The basic UNet model performs better than the other methods, but it lacks
in performance with high bright and dark distortions. Additionally, the results obtained from the basic
UNetmodel suffers fromblur problems. Additionally, twoother advance hybridUNetmodels DSRNand
Attention-UNet are also tested. The DSRN model uses the dilation mechanism and the Attention-UNet
uses the attention mechanism. Both the models has achieved results better than the standard UNet
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Label: Good Label: Fair 

Figure 5.10 : Samples of the quality evaluation results obtained from theMvRCNNmodel. Here, column
(a,c) represents naturally distorted fundus images, (b) shows the predicted images labelled
as good, and (d) shows the images labelled as fair quality.

architecture. However, the proposed RDC-UNet with the RDB as a bottleneck layer has outperform all
the models and shown the best results. The investigation for the reason behind the obtained results
yields the limitation of both the dialation and attentionmechanism. We found two issueswith dilation in
particular. First, it is not efficient towards extracting the local information. Second, after a certain level it
results in aweak correlationbetween theneighbouring units. Also, theoutput obtainedof the attention
gate subsequently gets smaller by each higher layer. It results in to the loss of local information of the
image.

5.3.4 Performance analysis of naturally degraded fundus images
Theproposedensemblemodelwas testedon 1000naturally degraded fundus images. Thevisual

quality of the obtained enhanced images were found to be satisfactory by ophthalmologists. For visual
clarity and comparison purposes, a few sample images are shown in Fig. 5.8 and Fig. 5.9. The Fig. 5.8
contains a total of eightpairs of naturally degraded imageswithmultiple distortions and their respective
enhanced fundus images. It also shows a magnified clip of the one of the affected areas containing
blood vessels, the optic disc, and the macula in the input image and its enhanced version. Here, Fig.
5.8 (a) contains samples of fundus images distorted with bright-haze, BUI-bright, MUI-dark, and BUI
from top to bottom, respectively, and the corresponding enhanced images are shown in Fig. 5.8 (b).
Similarly, Fig. 5.8 (c) contains samples of fundus images distorted with MUI, GUI, MUI-haze, and haze
distortions from top to bottom, respectively. Their corresponding enhanced images are shown in Fig.
5.8 (d). It can be observed that the our proposed model effectively handles the presence of multiple
such distortions. In addition, for comparative performance analysis purposes, in Fig. 5.9 the output
fundus images obtained from the proposedmethod are shown along with other competitive methods,
mentioned in subsection 5.3.3. It can be observed that the histogram equalisation-basedmethods have
suffered from over-enhancement issues. Fundus images with extra dark and bright regions remain
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Figure 5.11 : Predicted segmentationmap results obtained for the synthetically distorted and respective
enhanced images from the DRIVE dataset.

unaffected. Further, learning-based methods DnCNN, UNet models effectively handled such issues but
lackedwith regard to uneven illumination andmultiple distortion issues. However, the proposedmodel
is able to efficiently address such distortions. This is because the training of the model was performed
by combining the optimal featuremaps that are obtained by training the RDC-UNet individually for each
type of distortion.

5.3.5 Quality evaluation
The quality of the enhancement results for naturally degraded images was evaluated using the

recently reportedMvRCNNmodel [Raj et al., 2020]. Out of 1000 such images, themodel categorised 417
as of good quality while the other 583 remained as fair quality. It is important tomention that to ensure
reliable diagnosis, the sensitivity of MvRCNN towards good quality is high. Due to this factor, images
containing even a small amount of distortions were rejected to be labelled as good quality. In addition,
manyof the images labelledof fair quality in theEYEQdata-set containedcomparatively highdistortions.
These were the border cases of poor and fair quality. The proposed RDC-UNet model recovered such
types of images up to a certain extent but still remains short in pushing them into good quality. An
illustration of the images labelled as good and average are shown in Fig. 5.10. It can be observed that
the input images shown in Fig. 5.10 (c) are highly distorted ones, labelled as fair quality in the said
database, and an enhanced version of the same is given in Fig. 5.10 (d). The enhancement is significant
but not enough to be labelled as good quality to be used for reliable diagnosis.

5.3.6 Blood Vessel Segmentation
The ultimate objective of retinal image enhancement work is to enhance real clinical tasks.

Therefore, we performed experiments on retinal blood vessel segmentation to demonstrate the
effectiveness of the proposed methods. The popular DRIVE [Staal et al., 2004] dataset was used
where annotations for the blood vessels are provided. The UNet [Ronneberger et al., 2015] model was
considered as the baseline method for the segmentation task. Initially, the UNet model was trained
using the imagesprovided inDRIVEdatasetwith an areaunder the curve (AUC) value0.97. Furthermore,
the tested images were synthetically distorted with each of the five distortions. Thereafter, enhanced
images were obtained using the proposed RDC-Unet model. Finally, the segmentation output for each
distorted and their respective enhanced images were obtained. For synthetically distorted images,
the average value of the obtained AUC is 0.493. However, for the respective enhanced images the
obtained AUC vlaues is 0.856. It can be observed that there is a significant increase (1.7 times approx.)
in the performance of the segmentation model. The visual representation of the obtained results are
presented in Fig. 5.11. In addition, we also tested the accuracy of the segmentation model on naturally
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Figure 5.12 : Predicated segmentation map results obtained for naturally distorted and respective
enhanced images.

distorted fundus images. In this case, no ground truth available for the quantitative analysis. However,
for visual assessment, the obtained results are shown in Fig. 5.12. It can be observe that the blood vessel
maps obtained for the enhanced images are significantly better than the maps of original images. The
results demonstrate the efficiency of the proposedRDC-UNetmodel for the retinal image enhancement
model.

5.4 DISCUSSION
A good retinal image enhancement method is expected to effectively suppress the presence

of distortions that occur particularly in fundus images. The histogram processing based methods
are effective in handling the natural distortions. However, such methods often suffer with over
enhancement problem that is caused due to the absence of a controlling factor to balance the level
of required enhancement. CNN based learning methods effectively address such limitations. For
the enhancement task, use of supervised learning based models is advisable due for better error
correction. Such methods require a reference image for each distorted image. However, w.r.t the
naturally appearing distortions in retinal images, it is difficult to have reference images. One solution is
to capture a low quality retinal image simultaneously with a good quality image by creating some noisy
image acquisition environment. However, it is certainly not a cost effective approach in term of time,
money, and human efforts. Through this paper we address the abovementioned limitations and below
a detailed insights are provided for the proposed work.

• Distortion Generation: First, a total of five common degradations occurring in fair quality fundus
images were identified: (i) uneven illumination over macula, (ii) uneven illumination over border
region, (iii) bright, (iv) dark, and (iii) haze. Thereafter, algorithms proposed to create distortions
that closely resemble the above mentioned distortions. A total of 1000 good quality images
were randomly chosen as reference images from the EyeQ data-set. Now, With the help of the
proposed algorithms, a data-set of 14000degraded fundus imageswere created. Wewould like to
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Table 5.2 : Comparative performance analysis in terms of PSNR and SSIM values. P: PSNR, S: SSIM.

Distortion→ Bright Dark BUI MUI Haze
Method ↓ P S P S P S P S P S

ESIHE [Singh and Kapoor, 2014] 12.22 0.47 11.49 0.49 9.42 0.40 14.91 0.42 9.87 0.46

CLAHE [Shome and Vadali, 2011] 13.28 0.58 14.16 0.50 10.65 0.51 16.83 0.60 10.05 0.49

CRIE [Zhou et al., 2018] 16.37 0.71 17.99 0.65 21.66 0.66 22.00 0.64 9.87 0.44

SRLLIE [Li et al., 2018] 13.45 0.49 17.23 0.54 16.03 0.53 25.71 0.67 15.41 0.51

LightNet [Li et al., 2018] 17.41 0.55 22.10 0.57 24.21 0.63 34.07 0.72 13.14 0.46

DnCNN [Zhang et al., 2017b] 24.41 0.73 21.80 0.68 28.51 0.73 33.87 0.79 24.94 0.72

DSRN [Das et al., 2021] 26.75 0.68 26.18 0.67 29.21 0.75 33.71 0.83 28.81 0.78

UNet [Ronneberger et al., 2015] 29.45 0.74 28.22 0.76 32.71 0.83 37.67 0.89 30.48 0.83

A-UNet [Oktay et al., 2018] 33.15 0.83 30.01 0.85 39.17 0.91 41.49 0.88 30.80 0.84

Proposed 36.53 0.89 34.41 0.88 42.74 0.91 50.91 0.93 37.43 0.87

mention that, in this work most of the fundus images used are macula centered. Therefore, the
macular uneven illumination (MUI) distortion is created starting from the center of the image,
assuming that the macula is located near the center. Now, considering the experiences of the
ophthalmologists and observatory experiments yields that the spatial location of the MUI could
be anywhere around the macular region and also in any direction. There exist various possible
combinations of shapes and directions while creating the MUI distortion. Therefore, to increase
the model’s robustness towards the equiprobable spatial directions, a circular area around the
macula is selected.

• RDC-UNet: Furthermore, we proposed a residual dense connection based modified UNet
architecture, as shown in Fig. 5.5. The proposedmodel has two stage training procedure. The first
stage of training is achieved by training the RDC-UNet indiviually for each of the five distortions.
Here, it is to mention that before finalizing the individual training idea, we implemented a
UNet model based on a single shared encoder and separate decoder paths for each noise type.
However, the obtained results were not satisfactory. The primary reason behind such results was
that themodelwas expected to handle themany-to-one output condition. Using a single network
was a situation where the network was trained to map many inputs to a single output. As in our
case, therewere a total of fivedistortionsgenerated fromasingle fundus image. In addition, there
also exist multiple levels of each distortions. This input condition was confusing the network for
performing the correct mapping from a noisy input image to a clean output image. This lead to
the bad performance of the model. Therefore, we opted for the individual training approach to
solving the problem. The second stage of training was done over the porposed ensemble model,
as shown in Fig. 5.6. The proposed two stage training effectively suppresses the presence of
multiple such distortions in a naturally degraded retinal image.

It is also important to mention that our intuition to use RDC blocks in the bottleneck region of
UNet proved to be beneficial for the enhancement task. As it effectively captures both the local
and global information from the images. Experiments conducted with applying RDC with the
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encoder anddecoder section aswell. However, increasing thenumber of parameters in themodel
in terms of RDC block were not benefiting the overall enhancement accuracy in comparison with
the proposed RDC-UNet. Based on the above reason we moved with the proposed architecture
of the RDC-UNet.

• Model Performance: The number of parameters in the base UNet model is 29.24M, whereas
the number of parameters in RDC-UNet is 41.26M. As mentioned in subsection 5.2.2 several
experiments were conducted for the optimal setting of the number of RDB Blocks. With the
mentioned specifications, the performance of the proposed RDC-UNet model was found to be
better than other methods. In addition, our prime objective was to get the best possible quality
scores for effective enhancement, leading to reliable diagnosis. It is important to note that further
increasing the number of parameters did not increase the quality score (PSNR and SSIM) on
the evaluation metric for the proposed RDC-UNet architecture. In addition, complex and larger
models have different effects on relative improvements over accuracy as well as runtime. Making
themodel largermerely by increasing the number of channels (filters/ or layers) may have a linear
improvement up to some extent, but later the model starts overfitting, and there were sharp
reductions observed in testing accuracies. In the proposed architecture, the global and local
artifacts in the images are addressed simultaneously using residual dense blocks.

5.5 SUMMARY
• Through this work, a novel approach is proposed to address the fundus image enhancement

challenge. First, a total of five commonly appearing distortions in fundus images were identified:
(i) MUI, (ii) BUI, (iii) high bright, (iv) extra dark, and (v) haze. Thereafter, algorithms are proposed
to synthetically create the distortions closely resembling the same.

• Further, amodified version ofUNet architectureRDC-UNet containing residual dense connections
is proposed for the enhancement task. Initially, the proposed RDC-UNet was trained individually
for each of the mentioned distortions. The experimental results demonstrate that the proposed
RDC-UNet model achieves a high PSNR (50.91, 42.74, 36.53, 34.41 and 37.43) and SSIM (0.93, 0.91,
0.89, 0.88 and 0.87) values for (i), (ii), (iii), (iv), and (v), respectively, which are significantly higher
than those of other state-of-the-art methods. Furthermore, naturally degraded fundus images
might contain multiple such distortions at a time.

• Therefore, a new ensemble learning-basedmodel is proposed tomake themodel work efficiently
over naturally distorted fundus images. It was built using RDC-UNet trained individually for each
of the above mentioned distortions. It helped to reduce the multiple distortions effectively by
capturing the relevant information from these five models.

• Theperformanceof themodel is testedover a total of 1000naturally degraded fair-quality images.
The quality of the obtained enhanced images is tested using the MvR-CNN model. The obtained
results show that the proposed ensemble model has recovered approximately 41% images.

• In addition, the clinical significance of the model is also demonstrated with the help of blood
vessel segmentation application. StandardUNet based segmentationmodel is trainedoverDRIVE
dataset. The segmentation model is tested over both distorted and its respective enhanced
images. The AUC values obtained for the enhanced images are 1.7 times higher than the AUC
values of distorted images.

• The performance evaluation results show that the proposed approach effectively suppresses
multiple distortions present in the images. All the experimental results indicate the effectiveness
of the proposed approach that could potentially fill the gap of the unavailability of a labeled
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dataset.
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