
2

Equation of state model:

Relativistic Mean Field Theory

As already discussed in chapter-1, the matter interior to NSs may vary from sub-
saturation to as much as 10 times nuclear saturation density (n0). So the challenge is to
develop a model which in addition to describing the high density matter behavior also explains
the matter properties at around n0. The various aspects of Lorentz covariance, electromag-
netic gauge invariance as well as microscopic causality within a many-body system have to be
brought into consideration due to the pronounced relativistic effects (at zero temperature limit,
kinetic energy corresponding to the Fermi energy ∼ 40 MeV which is equivalent to v ≈ 0.3c)
in dense matter regimes. The interaction between quarks via the exchange of gluons is de-
scribed by the quantum chromodynamics (QCD) theory and it is the correct framework to
explain dense matter systems. Unfortunately, this can not be realized explicitly at such large
density scales. The dense matter models can be categorized into several classes as: micro-
scopic models which includes the Brueckner-Hartree-Fock (BHF) (non-relativististic) and its
relativistic counterpart Dirac-Brueckner-Hartree-Fock (DBHF) theories as well as variational
many-body approach, effective field theory models such as density functional theory (DFT)
and χ-perturbation theory models and lastly the phenomenological theory models comprising
the effective two-body interactions (non-relativistic) and relativistic mean-field (RMF) model
for relativistic scenario. Even though the microscopic models are parameter free, but they are
based on the nucleon-nucleon scattering data which is at present available to roughly ∼ 2− 3
times nuclear saturation density. Thus, in order to study dense matter beyond such densities
which is present interior to NSs one needs to implement an effective theory where instead of
considering quarks at the fundamental level, we assume hadrons in which quarks are confined.

Johnson and Teller [1955] proposed the non-relativistic quantized field theoretical il-
lustration of nuclear matter based on hadronic degrees of freedom known as quantum hadron
dynamics (QHD). But it has to be duly noted that this theory can be considered as an effective
(or, phenomenological) one due to the fact that hadrons are composite particles. The relativis-
tic effects on the model by Johnson and Teller [1955] was incorporated by Duerr [1956] and
further justified by Walecka [1974]. In QHD framework, the baryon-meson couplings constrain
the nuclear models. These couplings are estimated based on the different nuclear saturation
properties, namely saturation density, binding energy, symmetry energy and compression mod-
ulus. Various works have been accomplished to ascertain the coupling parameters for QHD
based on non-linear scalar (density-indepedent) (refer to sec.-2.2) and density-dependent (refer
to sec.-2.4) nature of the coupling models. In this work, we incorporate the mean-field approx-
imation (MFA) model to describe the dense matter systems as presented in the subsequent
sections.
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2.1 Quantum Hadron Dynamics

QHD-I, also known as σ − ω model is the simplest parameter set to describe hadronic
matter interactions. In this model, the long and intermediate range attractive interactions
between the nucleons are mediated via the exchange of neutral isoscalar-scalar σ-meson and
that of the short range repulsive interactions are via exchange of neutral isoscalar-vector ω-
meson. In short, it can be stated that the nucleon-nucleon interaction is illustrated by baryon-,
scalar meson- and vector meson-fields. The Lagrangian density of this system is given by
[Walecka, 1974] (We use natural units ℏ = c = 1 throughout)

L =
∑

N≡n,p

ψ̄N [γµ(i∂
µ − gωNω

µ)− (mN − gσNσ)]ψN +
1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ,

(2.1)

where γµ represent the gamma, or Dirac matrices which manifest the Dirac equation in a
compact form, σ, ωµ denote the isoscalar-scalar and isovector-vector meson fields respectively
with ωµν = ∂µων − ∂νωµ. mσ, mω represent the meson masses and mN stands for the bare
nucleon mass. The scalar and vector meson couplings to nucleons are symbolized as gσN , gωN
respectively.

Now, implementing the Euler-Lagrange equation given by

∂L
∂ζ

− ∂

∂xµ

[
∂L

∂(∂ζ/∂xµ)

]
= 0, (2.2)

where ζ represents the different fields in the system, we obtain the field equations as

Scalar field: (∂µ∂
µ +m2

σ)σ = gσN ψ̄NψN ,

Vector field: (∂µ∂
µ +m2

ω)ωµ − ∂µ∂
νων = gωN ψ̄NγµψN ,

Nucleon field: [γµ(i∂
µ − gωNω

µ)− (mN − gσNσ)]ψN = 0.

(2.3)

Due to the complexity in solving the coupled, non-linear equations presented in eq.-
(2.3), the MFA model was introduced. In this approximation, the system is considered to be in
a uniform state with nucleons interacting via exchange of mean meson field values (σ −→ ⟨σ⟩,
ω −→ ⟨ωµ⟩). The nucleon (or, baryon) operators in the equation of motion of meson fields can
be replaced by their ground state expectation values modifying eq.-(2.3) as

Scalar field: σ =
∑
N

1

m2
σ

gσN ⟨ψ̄NψN ⟩,

Vector field: ω0 =
∑
N

1

m2
ω

gωN ⟨ψ̄Nγ
0ψN ⟩,

(2.4)

where

Scalar density: nsN = ⟨ψ̄NψN ⟩ = 2

π2

∑
N

∫ kFN

0

mN − gσNσ√
k2 + (mN − gσNσ)2

k2dk,

Vector (or, baryon) density: nN = ⟨ψ̄Nγ
0ψN ⟩ = 4

∑
N

∫ kFN

0

dk

(2π)3
.
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(2.5)

Here, kFN
denotes the Fermi momentum of the nucleons. In MFA, contribution of only the

time components of vector meson field ω0 is brought into picture.

Next, in order to evaluate the energy density and matter pressure of the system, we
need to implement the energy-momentum tensor given by

Tµν =
∂ζ

∂xν

∂L
∂(∂ζ/∂xµ)

− ηµνL, (2.6)

with ηµν being the Lorentz transformation matrix. The energy density of the system is given
by the first element of the Tµν matrix. i.e. ε = ⟨T 00⟩ and the matter pressure is given by the
condition, P = (1/3)⟨T ii⟩ where i = 1, 2, 3.

Using eq.-(2.1) alongside the field equations and energy-momentum tensor, we get the
expressions for energy density

ε =
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

2

π2

∑
N

∫ kFN

0

√
k2 + (mN − gσNσ)2k

2dk (2.7)

and for the matter pressure

P = −1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

2

3π2

∑
N

∫ kFN

0

k2√
k2 + (mN − gσNσ)2

k2dk. (2.8)

The first and second terms on the right hand side of eqs.-(2.7), (2.8) are the mass contributions
from the scalar and vector fields respectively. The last term in the expressions for energy
density and matter pressure is the contribution from a relativistic Fermi gas of nucleons (or,
baryons) of effective mass m∗

N (σ) = mN − gσNσ.

So, the nuclear matter equation of state is evaluated by self-consistent solutions of the
energy density, ε(nN ) and matter pressure, P (nN ) expressions.

2.2 Non-Linear scalar coupling model

Fitting the baryon-meson coupling constants in the QHD-I model it was found that
even though it reproduced the nuclear matter saturation at Fermi wavenumber of 1.30 fm−1

and binding energy per nucleon of −15.75 MeV, this parameter set over-estimates the value of
compression modulus of nuclear matter. Boguta and Bodmer [1977] proposed that to evaluate
the value compressibility factor accurately at saturation density, the introduction of scalar
self-couplings into the nuclear matter Lagrangian density is necessary and given by

U(σ) =
1

3
bmN (gσNσ)

3 +
1

4
c(gσNσ)

4, (2.9)

where b, c represent the dimensionless coupling coefficients and mN denotes the bare nucleon
mass. Incorporating eq.-(2.9) into eq.-(2.1), we get

L =
∑

N≡n,p

ψ̄N [γµ(i∂
µ − gωNω

µ)− (mN − gσNσ)]ψN +
1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ −U(σ),

(2.10)
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The modified equations obtained by plugging in eq.-(2.9) are given as

Scalar field: σ = − 1

m2
σ

∂U(σ)

∂σ
+
∑
N

1

m2
σ

gσN ⟨ψ̄NψN ⟩,

Energy density: ε = U(σ) +
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0

+
2

π2

∑
N

∫ kFN

0

√
k2 + (mN − gσNσ)2k

2dk,

Matter pressure: P = −U(σ)− 1

2
m2

σσ
2 +

1

2
m2

ωω
2
0

+
2

3π2

∑
N

∫ kFN

0

k2√
k2 + (mN − gσNσ)2

k2dk.

(2.11)

It may be noted that the additional two coupling coefficients allow for two nuclear
properties viz. compression modulus (K) and Dirac effective nucleon mass (m∗) at nuclear
saturation density.

2.3 Isovector-vector coupling

In order to provide an account of another nuclear saturation parameter namely, sym-
metry energy (Esym) the incorporation of the charged isovector-vector ρ-meson is necessary.
These isovector mesons couple differently with neutrons and protons due to their corresponding
isospin. The introduction of ρ-meson to describing the isospin force in dense matter system is
termed as QHD-II and the Lagrangian density is given by modification in eq.-(2.10) as

L =
∑

N≡n,p

ψ̄N [γµ(i∂
µ − gωNω

µ − gρNτN · ρµ)− (mN − gσNσ)]ψN +
1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ −U(σ)− 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ,

(2.12)

where ρµ denotes isovector meson field with ρµν = ∂µρν − ∂νρµ and τ j represents the isospin
projection of the jth-particle (in this case nucleons) present in the dense matter.

Now, implementing the Euler-Lagrange equation on eq.-(2.12), we get the modified field
equations as

Isovector-vector field: (∂µ∂
µ +m2

ρ)ρµ − ∂µ∂
νρν = gρN ψ̄NγµτψN ,

Nucleon field: [γµ(i∂
µ − gωNω

µ − gρNτ · ρµ)− (mN − gσNσ)]ψN = 0,
(2.13)
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Table 2.1: Parameter values of the non-linear scalar RMF coupling models considered in our work.
Here, g2 = bmNg

3
σN and g3 = cg4σN . The nucleon mass, mN is considered to be ∼ 939 MeV

in this work.

Non-Linear gσN gωN gρN g2 g3 mσ mω mρ

RMF Model (fm−1) (MeV) (MeV) (MeV)

GM1 9.5708 10.5964 8.1957 12.2817 −8.9780 550 783 770

GM2 8.4305 8.7115 8.5415 9.9066 67.084 550 783 770

GM3 8.7821 8.7119 8.5415 27.8810 −14.401 550 783 770

NL3 10.2170 12.8680 8.9480 10.4310 −28.8850 508.194 782.50 763

NL3-II 10.2020 12.8540 8.9600 10.3910 −28.9390 507.680 781.869 763

NL-SH 10.4444 12.9450 8.7660 6.9099 −15.8337 526.059 783 763

NL-RA1 10.3623 12.9211 8.8117 10.0599 −27.5565 515.70 783 763

NL3* 10.0944 12.8065 9.1496 10.8093 −30.1486 502.574 782.60 763

GMT 9.9400 12.2981 9.2756 10.5745 −24.1907 511.198 783 770

followed by the expressions for ρ-meson field, energy density and matter pressure as

Isovector-vector field: ρ03 =
∑
N

1

m2
ρ

gρN ⟨ψ̄Nγ
0τN3ψN ⟩,

Energy density: ε = U(σ) +
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03

+
2

π2

∑
N

∫ kFN

0

√
k2 + (mN − gσNσ)2k

2dk,

Matter pressure: P = −U(σ)− 1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03

+
2

3π2

∑
N

∫ kFN

0

k2√
k2 + (mN − gσNσ)2

k2dk.

(2.14)

The conservation of charge implies the survival of only third component in isospin-space of the
isovector-vector ρµν meson field.

The introduction of ρ-meson brings into picture an additional restoring energy which
favors isospin symmetry. The computation of symmetry energy coefficient and its relation with
isovector-vector baryon-meson coupling will be discussed in subsequent chapters.

In the non-linear scalar coupling sector, a good number of coupling parametrizations
have been developed so far. Some of the non-linear scalar coupling parametrizations namely
GM1, GM2, GM3 [Glendenning and Moszkowski, 1991], NL3, NL3-II [Lalazissis et al., 1997],
NL-SH [Sharma et al., 1993], NL-RA1 [Rashdan, 2001], NL3* [Lalazissis et al., 2009] and GMT
[Pal et al., 2000a] implemented in this thesis work with their corresponding parameter values
are provided in table-(2.1). The nuclear saturation properties are tabulated in table-(2.2).
Based on these coupling parameter sets various properties of dense matter and NS observables
are studied which will be discussed in subsequent chapters. It is noteworthy to mention that
the symmetry energy coefficients of non-linear scalar coupling sets other than GM1, GM2 and
GM3 are quite high and lie beyond the admissible range as obtained from various experimental
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Table 2.2: The nuclear properties of the RMF models at respective n0.

RMF Model n0 −E0 K0 Esym Lsym m∗
N/mN

(fm−3) (MeV) (MeV) (MeV) (MeV)

GM1 0.153 16.30 300.00 32.50 93.857 0.700

GM2 0.153 16.30 300.00 32.50 89.289 0.780

GM3 0.153 16.30 240.00 32.50 89.627 0.780

NL3 0.148 16.29 271.76 37.40 118.317 0.600

Non- NL3-II 0.149 16.28 272.15 37.70 119.563 0.590

Linear NL-SH 0.146 16.346 355.36 36.10 113.654 0.600

NL-RA1 0.1466 16.15 285.00 36.10 115.305 0.600

NL3* 0.150 16.31 258.27 38.68 122.71 0.594

GMT 0.145 16.30 281.00 36.90 112.796 0.634

DD1 0.1487 16.021 240.00 31.60 55.949 0.565

DD2 0.149065 16.02 242.70 32.73 54.966 0.5625

DD-ME1 0.152 16.20 244.50 33.10 55.370 0.578

DD-ME2 0.152 16.14 250.89 32.30 51.253 0.572

Density- PKDD 0.149552 16.267 262.181 36.79 90.139 0.5712

Dependent TW99 0.153 16.247 240.00 33.39 55.309 0.555

DDV 0.151 16.097 240.00 33.589 71.463 0.586

DDF 0.1469 16.024 223.10 31.60 55.919 0.556

DD-MEX 0.152 16.14 267.059 32.269 49.576 0.556

findings and their consequent implications. Further details on this aspect will be addressed in
subsequent chapters.

2.4 Density-dependent coupling model

Initially proposed by Fuchs et al. [1995], in this coupling model the nucleon(baryon)-
meson coupling constants are considered to be varying with matter density. Following this
approach, the non-linear self-interactions of scalar mesons are substituted by density depen-
dent meson coupling values. Typel and Wolter [1999] suggested that this coupling model
provides better logical and reasonable descriptions of matter behavior at high density and
charge asymmetry regimes when compared with Dirac-Brueckner theory of nuclear matter.

In this section, we briefly describe the density-dependent coupling approach within
RMF theory framework considering matter to be composed of nucleons and their interactions
coordinated via the exchange of isoscalar-scalar σ, isoscalar-vector ω and isovector-vector ρ
mesons. The Lagrangian density of this dense matter system is given by [Typel and Wolter,
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1999]

L =
∑

N≡n,p

ψ̄N [γµ(i∂
µ − gωNω

µ − gρNτN · ρµ)− (mN − gσNσ)]ψN +
1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ,

(2.15)

where giN denotes the density-dependent nucleon-meson coupling parameter with i = σ, ω,
ρ and the other notations are similar as in case of eqs.-(2.1), (2.12). The density-dependent
isoscalar meson couplings to nucleons are provided by the relation

giN (n) = giN (n0)fi(x) for i = σ, ω (2.16)

where, x = n/n0, with n being the vector (or, baryon) number density and

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
. (2.17)

The function defined in eq.-(2.17) obtains similar results as that of various Dirac-Brueckner
calculations of symmetric nuclear matter. Based on the conditions, fi(1) = 1, f

′′
σ (1) = f

′′
ω (1)

and f
′′
i (0) = 0, the number of independent parameters to determine the seven parameter

values in eq.-(2.17) is reduced to three. And, de Jong and Lenske [1998] on the basis of Dirac-
Brueckner calculations of asymmetric nuclear matter suggested an exponential dependence for
ρ-meson coupling given by

gρN (n) = gρN (n0) exp [−aρ(x− 1)]. (2.18)

The independent parameters are calibrated in such a way so as to reproduce the properties
of symmetric, asymmetric nuclear matter and various nuclear saturation properties. One can
refer to Typel and Wolter [1999] for further discussion regarding the estimation of coefficient
values in eqs.-(2.17), (2.18).

The meson field equations in the density-dependent coupling model are given by

Isoscalar-scalar field: σ =
∑
N

1

m2
σ

gσN ⟨ψ̄NψN ⟩,

Isoscalar-vector field: ω0 =
∑
N

1

m2
ω

gωN ⟨ψ̄Nγ
0ψN ⟩,

Isovector-vector field: ρ03 =
∑
N

1

m2
ρ

gρN ⟨ψ̄Nγ
0τN3ψN ⟩.

(2.19)

Due to the density-dependent nature of nucleon-meson couplings, additional rearrange-
ment contributions in the self-energies of meson fields are introduced in the Dirac equation.
The Dirac equation in density-dependent coupling model is given by

[γµ(i∂
µ − gωNω

µ − gρNτ · ρµ − Σr(µ))− (mN − gσNσ)]ψN = 0, (2.20)

where

Σr
0 =

∑
N

[
∂gωN
∂n

ω0nN − ∂gσN
∂n

σnsN +
∂gρN
∂n

ρ03τN3nN

]
(2.21)
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represents the time component of rearrangement term and nN , nsN denote the vector, scalar
number densities respectively as defined in eq.-(2.5). The chemical potentials of nucleons are
modified as

µN =
√
k2FN

+ (mN − gσNσ)2 + gωNω0 + gρNτN3ρ03 +Σr
0 (2.22)

which results in introduction of rearrangement term in the expression for matter pressure
explicitly. This rearrangement term maintains the thermodynamic consistency of the dense
matter system. The energy density and matter pressure are then given by

Energy density: ε =
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03

+
2

π2

∑
N

∫ kFN

0

√
k2 + (mN − gσNσ)2k

2dk,

Matter pressure: P = −1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03

+
2

3π2

∑
N

∫ kFN

0

k2√
k2 + (mN − gσNσ)2

k2dk + nΣr
0.

(2.23)

The various density-dependent coupling models considered in this work are DD1 [Typel,
2005], DD2 [Typel et al., 2010], DD-ME1 [Nikšić et al., 2002], DD-ME2 [Lalazissis et al., 2005],
PKDD [Long et al., 2004], TW99 [Typel and Wolter, 1999], DDV [Typel and Alvear Terrero,
2020], DDF [Klähn et al., 2006] and DD-MEX [Taninah et al., 2020]. The nuclear saturation
properties corresponding to each parametrization is provided in table-(2.2). And the respective
parameter and coefficient values are tabulated in table-(2.3).

Additionally, to describe NS matter, the weak β-equilibrium between the particles (in
this case, nucleons) given by µn − µp = µe = µµ and the electric charge neutrality condition
np = ne + nµ need to be satisfied [Glendenning, 1996].

In the next chapters, we will discuss the implementation of various mentioned baryon-
meson coupling parametrizations within the framework of non-linear scalar as well as density-
dependent coupling models with viable inclusion of exotic particle degrees of freedom.
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Table 2.3: The parameter and coefficient values for the density-dependent coupling parametrizations, at n0.

Density-dependent gσN gωN gρN mN mσ mω mρ

RMF Model (MeV) (MeV) (MeV) (MeV)

DD1 10.685257 13.312280 7.278046 939 547.204590 783 763

DD2 10.686681 13.342362 7.25388 939.56536 546.212459 783 763

DD-ME1 10.44340 12.89390 7.61060 939.90 549.255 783 763

DD-ME2 10.53960 13.01890 7.36720 939.90 550.1238 783 763

PKDD 10.73850 13.14760 8.59960 939.5731 555.5112 783 763

TW99 10.72854 13.29015 7.32196 939 550 783 763

DDV 10.13696 12.77045 7.84833 939.5654 537.6001 783 763

DDF 11.0240 13.5750 7.290 939.56536 555 783 763

DD-MEX 10.706722 13.338846 7.23804 939.56536 547.332728 783 763

aσ aω aρ bσ bω cσ cω dσ dω
DD1 1.371545 1.385567 0.4987 0.644063 0.521724 1.034552 0.869983 0.567627 0.618991

DD2 1.35763 1.369718 0.518903 0.634442 0.496475 1.005358 0.817753 0.57581 0.638452

DD-ME1 1.3854 1.3879 0.5008 0.9781 0.8525 1.5342 1.3566 0.4661 0.4957

DD-ME2 1.3881 1.3892 0.5647 1.0943 0.9240 1.7057 1.4620 0.4421 0.4775

PKDD 1.327423 1.342170 0.183305 0.435126 0.371167 0.691666 0.611397 0.694210 0.738376

TW99 1.365469 1.402488 0.5150 0.226061 0.172577 0.409704 0.344293 0.901995 0.983955

DDV 1.20990 1.23750 0.33260 0.21290 0.03910 0.3080 0.07240 1.04030 2.14570

DDF 1.48670 1.54490 0.447930 0.19560 0.183810 0.42817 0.43969 0.88233 0.87070

DD-MEX 1.3970 1.39260 0.62022 1.334964 1.01910 2.067122 1.605966 0.40160 0.45560
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