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(Anti)kaon condensation in dense

matter

3.1 Introduction

Nuclear matter is composed of mainly neutrons with small admixture of protons and
electrons in β-equilibrium condition and fraction of protons are electrons are equal to keep
the condition of charge neutrality. With the increase of neutron density the electron density
and hence the Fermi momentum increases to keep the matter in β-equilibrium. With further
increase of density when the electron Fermi energy reaches the vacuum mass of mesons (pion or
kaon), condensate of negatively charged mesons is one of the several possible transitions which
in turn help to maintain the charge neutrality. Even though the pion mass is significantly
lower in comparison with kaons, s-wave πN scattering potential being repulsive the effective
ground state mass of π-meson increases [Glendenning, 1985] opposing the possibility of π-meson
appearing. Thus, in this thesis work, we have not included the pion contribution in dense
matter systems. While, (anti)kaon condensation could exist by the processes n→ p+K− and
N → N + K̄0 with N representing the nucleons. The effective ground state mass of K-meson
decreases due to its attractive interaction with nucleons opening the possibility of K-meson
appearing.

Kaplan and Nelson [Nelson and Kaplan, 1987; Kaplan and Nelson, 1988] for the very
first time demonstrated that (anti)kaon K− may undergo Bose-Einstein condensation in dense
matter formed in heavy-ion collisions. The K−-nucleon interaction was explained based on
minimal coupling model in refs.-Glendenning and Schaffner-Bielich [1998, 1999] and we follow
this approach in our studies. Furthermore, other evidences such as the K− atomic data, kaon-
nucleon scattering data [Brown et al., 1994; Lee et al., 1994, 1995] studied by several authors in
chiral perturbation theory also encouraged the concept of K− condensed phase presence in the
interior of NS. The in-medium energy of (anti)kaon K− mesons decreases in the dense matter
due to the lowering of effective mass. Finally, the onset of s-wave K− condensation occurs
when the chemical potential of K− (ωK−) equates the electron chemical potential (µe). The
s-wave K̄0 appears when its chemical potential (ωK̄0) equates to zero. The threshold density
of (anti)kaon appearance is very sensitive to the optical potential in nuclear symmetric matter.
Studies Brown et al. [1994]; Lee et al. [1994]; Knorren et al. [1995]; Schaffner and Mishustin
[1996] reveal that K+ mesons develop a repulsive optical potential nature in nuclear matter.
Thus, it may be concluded that kaon K+ condensation is not favored inside the NS. Phase
transitions from hadronic to kaonic phases in dense matter may be either a first or second order
type depending on the (anti)kaon optical potential depths. The first order phase transition may
result in a mixed phase region depending on the surface tension between the two phases. If the
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surface tension is low, mixed phase is favoured while higher values of surface tension rejects
mixed phase regime. Since the value of surface tension between the (anti)kaons and nucleons
is not ascertained, we consider the same to be via low and study the nucleon-(anti)kaon mixed
phase regime. Various observational features of NS evolution such as the spin down rates,
cooling and glitches may be affected by the alterations of weak interaction rates and transport
properties of matter interior to NS due to phase transitions Heiselberg and Hjorth-Jensen [2000];
Kubis and Kutschera [2003]. If the surface tension between the two phases is low, then the first
order phase transition cannot be explained by merely the Maxwell’s construction accounting
for only one charge conservation because NSs have two conserved charges viz. baryon number
conservation and global charge neutrality. The Gibbs conditions are employed to adequately
explain the mixed phase regime of the NS interior Glendenning [1996]. However this is not true
if the surface tension is large between the two phases which will then eradicate the possibility
of mixed phase.

The onset of (anti)kaons in compact star matter is very sensitive to the K− optical
potentials and affects many properties of compact stars beyond the equation of state, such
as superfluidity [Xu et al., 2018], neutrino emission via direct Urca processes [Ding et al.,
2009; Xu et al., 2020] and bulk viscosity [Chatterjee and Bandyopadhyay, 2008]. This is a
direct consequence of the changes in the single-particle spectrum of fermions, e.g., the Fermi
momenta, effective masses, etc.

The formalism to introduce (anti)kaons in non-linear scalar as well as density-dependent
RMF models and study the phase transition from hadronic to anti-kaon condensed matter is
presented in next section (refer to sec.-3.2). This is followed by discussing the (anti)kaon
coupling parameter estimations in sec.-3.3 and results in sec.-3.4. Finally the summary along
with conclusions are outlined in sec.-3.5. This chapter is based on the work Thapa and Sinha
[2020].

3.2 Formalism

The theoretical framework for the nuclear sector is already described in sec.-2.1. In
this section, we introduce the RMF model to study the (anti)kaon condensed matter phase.
The strong interactions between the (anti)kaons are mediated by the exchange of scalar σ,
isoscalar-vector ωµ and isovector-vector ρµν meson fields. The Lagrangian for the (anti)kaons
reads as

LK = D∗
µK̄D

µK −m∗2
K K̄K (3.1)

where K̄ ≡ K−, K̄0, (anti)kaon effective mass, m∗
K = mK − gσKσ with mK = 495 MeV

denoting the bare (anti)kaon mass and the covariant derivative is given by

Dµ = ∂µ + igωKωµ + igρKτK · ρµ. (3.2)

The scalar meson coupling to (anti)kaon is coupled similar to a minimal coupling scheme
following ref.-Glendenning and Schaffner-Bielich [1999]. The equation of motion for (anti)kaons
can be written as

[DµD
µ +m∗

K ]K = 0. (3.3)
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Considering infinite matter, the plane wave solution of eq.-(3.3) is given byK ∼ e−iωKtκ
which reduces eq.-(3.3) to the form

[−ω2
K +m2

K +ΠK(ωK ,k)]κ = 0 (3.4)

where k denotes the 3-momentum of (anti)kaons and the self energy of K− denoted by
ΠK(ω0,k) is given by

ΠK = −2ωK

(
gωKω0 +

1

2
gρKρ03

)
−
(
gωKω0 +

1

2
gρKρ03

)2

− 2mKgσKσ + (gσKσ)
2 (3.5)

In the MFA, the in-medium energies of K̄ ≡ (K−, K̄0) for s-wave condensation (k = 0)
are provided by substituting eq.-(3.5) in eq.-(3.4)

ωK−,K̄0 = m∗
K − gωKω0 ∓

1

2
gρKρ03 (3.6)

with the isospin projections forK−, K̄0 being −1/2,+1/2 respectively. Within MFA, the meson
fields acquire the ground state expectation values

σ = − 1

m2
σ

∂U

∂σ
+
∑
N

1

m2
σ

gσNn
s
N +

∑
K̄

1

m2
σ

gσKnK̄ ,

ω0 =
∑
N

1

m2
ω

gωNnN −
∑
K̄

1

m2
ω

gωKnK̄ ,

ρ03 =
∑
N

1

m2
ρ

gρNτN3nN +
∑
K̄

1

m2
ρ

gρKτ K̄3nK̄

(3.7)

where, the first term in right hand side of eq.-(3.7) (σ-meson field) is required only in the case
of non-linear scalar model while it is absent in case of density-dependent model. The number
density in case of the s-wave (anti)kaon condensates evaluated from the conserved current
associated with (anti)kaons is given by

nK−,K̄0 = 2

(
ωK̄ + gωKω0 ±

1

2
gρKρ03

)
= 2m∗

KK̄K.

(3.8)

For the (anti)kaon condensates, the energy density contribution to the total one is given
by

εK̄ = m∗
K(nK− + nK̄0). (3.9)

(Anti)kaons being Bose condensates, there is no direct contribution to the total matter pressure
from their ends. Due to the inclusion of (anti)kaons, the charge neutrality condition is modified
as, np − nK− − ne − nµ = 0.

Studies Prakash et al. [1997]; Glendenning [1996] show that strangeness changing pro-
cesses such as, N ⇌ N + K̄ and e− ⇌ K− may come into picture inside the neutron star core.
Hence, (anti)kaons may appear by these reactions, when the threshold conditions are satisfied
as

µn − µp = ωK− = µe, ωK̄0 = 0. (3.10)
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3.2.1 Mixed phase regime

The EoS of matter interior to compact objects is characterized by matter phase transi-
tions. In the case of (anti)kaon condensation, the matter phase transition may occur through
either first order (this form of phase transition is triggered by the implicit behaviour as decrease
in neutron chemical potential with rising matter density) or second order depending upon the
(anti)kaon optical potential in nuclear symmetric matter [Glendenning, 1996]. Glendenning
[1992] treated the phase equilibrium in the case of multi-component or, multiple chemical po-
tentials corresponding to the conserved quantities via Gibbs conditions. In this treatment of
first order phase transition, the global charge neutrality condition is considered in lieu of local
one. As a result, the matter pressure increases monotonously in the interior to dense matter.

In case of the phase transition being first order, a mixed phase could come into picture:
the two phases of pure hadronic matter without condensate and with condensate could co-
exist. Then for this case, the Gibbs conditions alongside global baryon number conservation
and charge neutrality can be enforced to determine the mixed phase state [Glendenning, 1992;
Glendenning and Schaffner-Bielich, 1998]. The Gibbs conditions for this state are given by,

P h = P K̄ (Pressure equilibrium),

µhN = µK̄N (Chemical equilibrium),
(3.11)

where h and K̄ superscripts represent the respective quantities in hadronic and (anti)kaon
condensed phase respectively. Since we are considering cold dense matter EoS, so the thermal
equilibrium condition may be not brought into picture in this particular scenario. The two
additional global constraints (viz. global baryon number conservation and charge neutrality)
are modified in both the phases as

nN = (1− χ)nhN + χnK̄N ,

(1− χ)Qh + χQK̄ = 0
(3.12)

respectively. Here, χ is the fraction of (anti)kaon (K−) condensed phase in the mixed phase
regime. The beginning and end of mixed phase region are signalled by χ = 0, 1 respectively.
Region with χ < 0 is the pure hadronic phase and χ > 1 is the (anti)kaon condensed phase. In
the mixed phase, the total energy density also changes the form to

ε = (1− χ)εh + χεK̄ (3.13)

where, εh, εK̄ denotes the total energy density in hadronic and (anti)kaon phases respectively.

3.3 Coupling parameters

In this work to study the role of (anti)kaon condensation in NS matter, we adopt GMT
[Pal et al., 2000a] and NL3 [Lalazissis et al., 1997] coupling parametrizations in non-linear
scalar scheme while in case of density-dependent model we consider DD2 [Typel et al., 2010],
DD-ME2 [Lalazissis et al., 2005] and PKDD [Long et al., 2004] coupling parameter sets to
describe the meson-nucleon interactions. The coupling values of the parameter sets considered
in this work are provided in tables-2.1 and 2.3.
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Table 3.1: Parameter values of the scalar σ meson-(anti)kaon couplings in different parametrizations
at n0 considered in this study.

UK̄(n0) gσK
(MeV) GMT NL3 DD-ME2 DD2 PKDD

−120 0.8217 0.4707 0.4311 0.3155 0.4309
−140 1.4006 1.0088 0.9553 0.8359 0.9639
−160 1.9796 1.5469 1.4796 1.3562 1.4970

3.3.1 (Anti)kaon coupling constants

To explore the effect of (anti)kaons on dense matter, parametrizing the meson-(anti)kaon
as well as (anti)kaon-nucleon interactions are essential. In order to do so, we need to specify the
meson-(anti)kaon coupling values. The meson-(anti)kaon couplings are not considered to be
density-dependent following ref.-Char and Banik [2014] in density-dependent RMF model. The
vector coupling parameters (i.e. the coupling with ω and ρ mesons) in the (anti)kaon sector are
evaluated from the iso-spin counting rule and quark model [Glendenning and Schaffner-Bielich,
1999; Banik and Bandyopadhyay, 2001] as

gωK =
1

3
gωN , gρK = gρN . (3.14)

And for the scalar coupling parameters (i.e. with σ meson), they are calculated at nuclear
saturation density from the real part of K− optical potential depth of a single (anti)kaon in
infinite matter as

UK̄(n0) = −gσKσ(n0)− gωKω0(n0) + Σr
N (n0) (3.15)

where, Σr
N (n0) is the contribution from the nucleons alone and is not considered in case of

non-linear scalar RMF model.

Studies Li et al. [1997]; Pal et al. [2000b] show that the kaons experience a repulsive
interaction in nuclear matter whereas (anti)kaons experience an attractive potential. Several
model calculations Koch [1994]; Waas and Weise [1997]; Lutz [1998]; Ramos and Oset [2000];
Schaffner-Bielich et al. [2000] provide a very broad range of optical potential values as −120 ≤
UK̄ ≤ −40 MeV. Another calculation from a hybrid model based on a theoretically motivated
RMF approach and a phenomenological density dependent potential satisfying the low density
theorem in the nuclear surface region [Friedman et al., 1999] suggests the value of K− optical
potential to be in the range 180± 20 MeV at nuclear saturation density. In this work, we have
considered a K− potential range of −160 ≤ UK̄ ≤ −120 MeV and the scalar meson-(anti)kaon
couplings evaluated for the above potential depth range are listed in table-3.1.

3.4 Results and discussions

The coupling parameter sets considered in this work satisfy the nuclear saturation
properties obtained from various model calculations based on certain experimental data. In this
section, we present the results of the possibility of (anti)kaon in dense nuclear matter evaluated
with the framework of RMF theory and considering different (anti)kaon optical potentials as
UK̄ = −120,−140,−160 MeV.
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3.4.1 Non-Linear scalar RMF model

In the case of GMT parametrization, the transition from hadronic to kaonic phase is
observed to be of second order for UK̄ = −120,−140 MeV but of first order for UK̄ = −160
MeV. While in case of NL3 parameterization, the phase transition is of second order for the
whole range of K− potential adopted here.
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Figure 3.1: The effective energy of (anti)kaons as a function of baryon number density, left panels:
GMT, right panels: NL3 parametrization. Upper panels: in-medium energies of K̄0,
lower panels: in-medium energies of K− with several UK̄ . The dashed lines represent the
respective electron chemical potentials for each model case. The solid curve exhibits the
UK̄ strengths of −120 MeV, dash-dotted lines exhibits −140 MeV case and dotted lines
exhibits the −160 MeV case.

The (anti)kaon energies as a function of baryon number density with UK̄ = −120, −140,
−160 MeV for the two parameter sets (GMT, NL3) are shown in fig.-3.1. The in-medium
energies for both the (anti)kaons decrease with density. The dashed curve representing µe
crossing over the ωK̄ curves marks the end of pure hadronic phase and initiation of (anti)kaonic
phase. K− condensations initiates once the value of ωK− reaches that of the electron chemical
potential and K̄0 condensation starts when the value of ωK̄0 equates to zero. It is observed
that the threshold condition, ωK− = µe is achieved way earlier than ωK̄0 = 0 one, leading to
earlier appearance of K−.

Fig.-3.2 shows the matter pressure as a function of energy density for both the GMT
and NL3 models. The appearance of (anti)kaons to a great extent softens the EoS. The two
kinks in the EoSs marks the onset of K− and K̄0 respectively. The two kinks are observed to
be in higher densities for the NL3 model in comparison to the GMT case referring the delay
of (anti)kaons into the matter for the former case. The appearance of (anti)kaon condensation
is through first order transition only for K− with UK̄ = −160 MeV in GMT parametrization.
In other cases it is second order phase transition.

The variation of particle fractions with total baryonic number density is shown in the
fig.-3.3 for UK̄(n0) = −160 MeV for both the parametrization sets. Inspite of large rest mass of
(anti)kaons compared to the lepton species and being bosons, the former condense in the lowest
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Figure 3.2: The variation of matter pressure with energy density. Left panel: GMT parameterization,
right panel: NL3 parameterization cases with several (anti)kaon potential depths (UK̄).
The solid lines represent the composition of only nucleons (n, p) and leptons (e−, µ−).
The other curves represent the composition with (anti)kaons in addition to nucleons and
leptons. The dashed curve depicts UK̄ = −120 MeV, dash-dotted curve with UK̄ = −140
MeV and dotted curve with UK̄ = −160 MeV.

0 1 2 3

n/n
0

0.001

0.01

0.1

1

n
i/n

n
p

e
-

µ
−

K
-

K
0

0 1 2 3 4

U
K

= -160 MeV

GMT NL3

U
K

= -160 MeV

Figure 3.3: Population densities ni (in units of n) of various species as a function of baryon number
density. Left panel: GMT, right panel: NL3 model and K− potential depth of −160 MeV.
Solid lines denote neutron (n), long-dashed lines proton (p), dash-dotted curves electron
(e−), dotted lines muon (µ−), short-dashed lines K− and dash-double dotted lines denote
K̄0 population.

energy state and so are preferred to maintain the global charge neutrality condition. This results
in decrease in electron and muon populations as can be clearly visualized in fig.-3.3. Further,
with appearance of K̄0 at ∼ 3.49 n0 and ceasing of electron population around 4 − 4.5 n0
the proton and K− populations become equal following the charge neutrality condition. The
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condensation of K̄0 is found to be through the second order phase transition. However, for NL3
coupling model the phase transition occurs via second order for both the (anti)kaons (K−, K̄0)
implying the absence of mixed phase regime. Even though we are fixing the UK̄ identical to
GMT model cases, the (anti)kaons appear at a slightly higher densities compared to the former
case. The threshold densities for the onset of K−, K̄0 in the dense nuclear matter for different
(anti)kaon optical potentials are provided in table-3.2. It can be observed that the threshold
densities shift towards lower densities with the increase in strength of UK̄ at n0.

Table 3.2: Threshold densities, ncr for (anti)kaon condensation in dense nuclear matter for different
values of K− optical potential depths UK̄ at n0.

GMT NL3
UK̄ ncr(K

−) ncr(K̄
0) ncr(K

−) ncr(K̄
0)

(MeV) (n0) (n0) (n0) (n0)

−120 2.87 4.45 2.77 4.35
−140 2.56 3.96 2.49 3.94
−160 2.22 3.49 2.24 3.53
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Figure 3.4: The mass-radius relations corresponding to the EoSs shown in fig.-3.2. Left panel: GMT,
right panel: NL3 parameterization. The solid curve corresponds to the pure nucleonic
star, while the dashed, dash-dotted, dotted curves correspond to stars with (anti)kaon
condensation and optical potentials, UK̄ = −120,−140,−160 MeV respectively. The mass
constraints from the various astrophysical observations are represented by the shaded re-
gions corresponding to the GW190814 observation [Abbott et al., 2020b], MSP J0740+6620
[Cromartie et al., 2020]. The mass-radius limits obtained for PSR J0030+0451 from the
NICER experiment [Miller et al., 2019; Riley et al., 2019] are represented by the squared
shaded regions.

Fig.-3.4 shows the results of the mass-radius (M-R) relationship for static spherical
stars from solution of the Tolman-Oppenheimer-Volkoff (TOV) equations corresponding to the
EoSs discussed here and shown in fig.-3.2. For the crust, we have considered the EoS of Baym,
Pethick and Sutherland (BPS) [Baym et al., 1971b] and Baym, Bethe, Pethick (BBP) [Baym
et al., 1971a]. Table-3.3 provides the set of maximum mass values, corresponding radius and
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central density for the nucleons and (anti)kaon EOSs with various values of UK̄ . Inclusion of
(anti)kaons leads to reduction of maximum mass of the compact stars. In this particular work,
the possibility of a third family of compact objects is not studied due to the reason that for a
third family to come into picture the (anti)kaon potential needs to be high enough resulting in
softer EoSs evaluating lower maximum mass NS configurations.

Table 3.3: Parameter values of the maximum mass stars from fig.-3.4. Here, maximum mass, Mmax,
radius and corresponding central density nc of nucleon compact stars for different values of
K− optical potential depths UK̄ at n0 in GMT and NL3 parametrization models.

GMT NL3
UK̄ Mmax R nc Mmax R nc

(MeV) (M⊙) (km) (n0) (M⊙) (km) (n0)

0 2.66 12.80 4.91 2.77 13.14 4.52
−120 2.44 13.31 4.76 2.59 13.56 4.37
−140 2.27 13.36 4.75 2.47 13.59 4.47
−160 2.00 13.22 4.78 2.28 13.48 4.53

First order phase transition

In our study, we observe that for GMT parametrization the mixed phase initiates with
the onset of K− at ∼ 2.22 n0. The global conservation rule of baryon number and charge
neutrality (eq.-(3.12)), pressure and chemical potential equilibrium conditions between two
phases (eq.-(3.11)) determine the mixed phase region. Fig.-3.5 shows the extent of mixed
phase region inside a 2 M⊙ neutron star modelled with GMT parametrization. It is evident
that the mixed phase regime starts (χ ∼ 0) from around matter density of ∼ 2.22 n0 which
corresponds to star radius 7.34 km, and terminates (χ ∼ 1) at around matter density of 2.9 n0
or corresponding stellar radius of, ∼ 6.13 km.
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Figure 3.5: Baryon number density (n), radial distance (r) inside a 2 M⊙ compact star as a function of
volume fraction of the (anti)kaon condensate (χ) for the GMT model case with UK̄ = −160
MeV. The solid curve denotes χ(r), while dashed curve represents χ(n).
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The interactions between (anti)kaons and nucleons alters the nucleon effective mass in
the mixed phase regime where both the hadronic and (anti)kaonic phase co-exist. This effect in
shown in fig.-3.6. With a difference of ∼ 100 MeV, the effective nucleon masses are observed to
increase in (anti)kaonic phase while it decreases in the pure hadronic phase as we move interior
towards the (anti)kaonic condensed phase regime.
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Figure 3.6: Effective nucleon mass, m∗
N as a function of baryon number density for the GMT model

case with UK̄ = −160 MeV. The solid curve denotes m∗
N (nB) in hadronic phase, while

dash-dotted curve represents m∗
N (nB) in (anti)kaonic phase. Region with n < 2.2 n0 is

the pure hadronic phase, between 2.2 ≤ n ≤ 2.9 n0 is the mixed phase and n > 2.9 n0 is
the (anti)kaonic phase.

The charge densities of each normal and kaon condensed phase in the mixed phase
region for the GMT model with UK̄ = −160 MeV as a function of the kaon volume fraction are
shown in fig.-3.7. The central solid black line represents the global charge neutrality condition
as provided in eq.-(3.12).

The difference in the energy densities of the hadronic and (anti)kaonic phases for GMT
parameterization with UK̄ = −160 MeV is shown in fig.-3.8. The total energy density in the
mixed phase region is evaluated from eq.-(3.13) and grows monotonically with density.

3.4.2 Density-dependent RMF model

In case of density-dependent RMFmodel, the phase transition from hadronic to (anti)kaonic
phase for all parametrizations and all (anti)kaon optical potential depths considered in our work
is through the second-order phase transition.

Table-3.4 provides the threshold densities of (anti)kaon condensation in different poten-
tial depths of (anti)kaons. It can be observed from table-3.4 that the appearance of K−-mesons
takes place earlier in case of DD-ME2 model irrespective of the optical potential. On the other
hand, the appearance of K̄0 takes place early in PKDD model among others. With the in-
creasing potential depth of (anti)kaons in symmetric nuclear matter, the onset of (anti)kaons
happens earlier.
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The matter pressure as a function of energy density for different density-dependent
coupling models is shown in fig.-3.9. It is observed that the stiffest EoS results are for the
DD-ME2 parametrization. Incorporation of K̄ softens the EoS and more pronounced effects
are seen with deeper K− optical potential depths. The two kinks in the EoS marks the onsets
of K− and K̄0 respectively. While the first kink appears to be ∼ 400 MeV/fm3 for all the
three parametrizations, the onset of K̄0 denoted by the second kink is delayed the most in
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Table 3.4: Threshold densities, ncr for antikaon condensation in dense nuclear matter for different
values of K− optical potential depths UK̄ at n0 with density-dependent DD-ME2, DD2,
PKDD parametrizations.

DD-ME2 DD2 PKDD

UK̄ (MeV) nK
−

cr (n0) nK̄
0

cr (n0) nK
−

cr (n0) nK̄
0

cr (n0) nK
−

cr (n0) nK̄
0

cr (n0)

−120 3.00 4.89 3.08 5.11 3.16 4.75
−140 2.72 4.42 2.79 4.62 2.82 4.29
−160 2.47 3.96 2.53 4.14 2.53 3.84

0 200 400 600 800
0

50

100

150

200

250

300

350

400

450

500

P
 (

M
eV

/f
m

3
)

0 200 400 600 800

ε (MeV/fm
3
)

0 200 400 600 800 1000

U
K

 = -120 MeV

U
K

 =  -140 MeV

U
K

 = -160 MeV

DD-ME2 DD2 PKDD

npe
−
µ

−

npe
−
µ

−
K

−
Κ

0

Figure 3.9: The equation of states, Left panel: DD-ME2, center panel: DD2, right panel: PKDD
parametrization case with several (anti)kaon potential depths (UK̄). The solid lines rep-
resent the composition of only nucleons (n, p) and leptons (e−, µ−). The dashed curves
depict UK̄ = −120 MeV, dash-dotted curves with UK̄ = −140 MeV and dotted curves
with UK̄ = −160 MeV represent the composition with (anti)kaons.

DD2 parametrization case.

Fig.-3.10 presents the results of mass-radius (M-R) relationship for static spherically
symmetric stars by solving the TOV equations corresponding to the EoSs in fig.-3.9. The
crust EoS is the same as considered in the NL CDF model. Table-3.5 provides the set of
maximum mass, and corresponding radius and central density with different values of UK̄ .
For the stars with only nucleons and leptons, the maximum masses are 2.48, 2.42, 2.33 M⊙
with DD-ME2, DD2 and PKDD parametrization respectively. The maximum mass of the
compact stars decreases substantially with the inclusion of (anti)kaons. It is observed that
configurations with DD-ME2 satisfy the observed maximum mas neutron star constraint of
∼ 2 M⊙ uptil UK̄ = −160 MeV. For the other two model cases, DD2 satisfy the constraint
uptil UK̄ = −140 MeV, while PKDD providing a further softer EoS satisfy the constraint only
upto UK̄ = −120 MeV.

Fig.-3.11 represents the (anti)kaon energies as a function of baryon number density
with UK̄ = −120 MeV for the density-dependent coupling models. The onset of K− and K̄0
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Table 3.5: Maximum mass, Mmax (in units of M⊙), radius (in km), corresponding central density (in
units of n0) of nucleon compact stars for different values of K− optical potential depths UK̄

(in units of MeV) at n0 in DD-ME2, DD2, PKDD parametrization models.

Config. → npeµ npeµK̄
Model ↓ Parameters ↓ UK̄ (MeV) → 0 −120 −140 −160

Mmax(M⊙) 2.48 2.29 2.18 2.01
DD-ME2 R (km) 11.96 12.28 12.37 12.43

nc (n0) 5.36 5.37 5.33 5.22

Mmax(M⊙) 2.42 2.21 2.09 1.92
DD2 R (km) 11.77 12.14 12.23 12.29

nc (n0) 5.69 5.68 5.62 5.47

Mmax(M⊙) 2.33 2.10 1.95 1.73
PKDD R (km) 11.63 12.31 12.44 12.56

nc (n0) 5.94 5.54 5.36 5.05

occurs with ωK− crossing over µe− and ωK̄0 being equal to zero respectively. Similar behavior
is observed in case of DD-ME2 and DD2 parametrization models, while for PKDD model, the
K− in-medium energy is higher compared to the other two cases and K̄0 in-medium energy is
observed to be lower.

The population densities of different species, ni (in units of n0) in the neutron star
interior as a function of baryon number density for the density-dependent models are provided
in fig.3.12. (Anti)kaons, being bosons are not constrained by Pauli blocking, resulting in lepton
fraction suppression at high density regions. The population behavior in two cases of DD-
ME2 and DD2 are observed to be similar with slight difference in the threshold density of K̄-
meson appearance. The proton population (subsequently electron and muon) is higher at lower
densities for PKDD model case compared to DD-ME2, DD2 models due to higher symmetry
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Figure 3.11: The effective energy of (anti)kaons as a function of baryon number density with UK̄ =
−120 MeV. Upper panel: for K̄0 and lower panel: for K− with solid lines denoting
DD-ME2, dash-dotted curves representing DD2 and dotted lines representing PKDD
parametrization.

energy. For PKDD model, in addition to the early onset of K̄0 particles, the eradication of
lepton species is quite delayed compared to the former parametrizations due to the abundance
of more protons. This results in further softening of EoS.

3.5 Summary

In this chapter, we investigated the appearance of the (anti)kaon condensation in β-
equilibrated charge neutral nucleonic matter within the framework of mean field theory with
density-independent (non-linear scalar RMF model) as well as dependent (density-dependent
RMF model) coupling constants.

Stars with mass near and above 2 M⊙ must contain central density above 4 n0. At
such high density the phase transition to boson condensate within the nuclear matter is highly
probable. However, the appearance of (anti)kaon condensation softens the EoS lowering the
maximum mass of the NS family. We discuss here certain parametrizations of EoS within
RMF model which are stiff enough to provide maximum mass above 2 M⊙ with appearance
of (anti)kaon condensation at the inner core of the star. We obtain the result that with non-
linear model, GMT and NL3 parametrizations provide the required stiff EoS to have maximum
mass 2 M⊙ with all the (anti)kaon optical potential depth UK̄ = −120,−140,−160 MeV.
The (anti)kaon condensed star with UK̄ = −120 MeV and NL3 coupling model satisfies the
gravitational wave observation mass constraint from GW190814 even though it is uncertain as
the star has not been identified as NS unambiguously [Abbott et al., 2020b; Sedrakian et al.,
2020; Jie Li et al., 2020]. For density-dependent RMF model, the DD-ME2 parametrization
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gives a realistic M-R relation for all the considered values of UK̄ .

In most of the cases, the transition to a condensed phase is through second order
phase transition. First order phase transition occurs only with UK = −160 MeV for the non-
linear model with GMT parametrization. In this case the star possesses a mixed phase region
containing both hadronic and condensed phase simultaneously. To explain the mixed phase
regime, Gibbs conditions alongside global baryon number conservation and charge neutrality
are exploited. The mixed phase region ranges for a length of ∼ 1.21 km of stellar radius from
6.13 to 7.34 km in a 2 M⊙ NS. The outer core region upto 7.34 km is the pure hadronic
phase while the region in the inner core from 6.13 km to center of the star is the (anti)kaon
condensed phase. Moreover, the K̄0 condensation is a second-order phase transition. The
compact star with the mixed phase regime satisfies the bounds set on mass-radius by the
various recent astrophysical observations. The EoS (with mixed phase) evaluated with GMT
model incorporating the K̄ condensation which satisfies 2 M⊙ criteria can be employed to study
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the glitch phenomena in pulsars.

In case of density-dependent parametrization models (DD-ME2, DD2, PKDD), the
(anti)kaon condensation is through second-order phase transition. Among these parametriza-
tions, DD-ME2 produces the stiffest equation of state for both the cases with only nucleons as
well as nucleons and (anti)kaons. All parameter sets explain the 2 M⊙ neutron star without
the inclusion of (anti)kaons. In case of DD2 model, the configuration with UK̄ = −160 MeV
doesn’t satisfy the ∼ 2 M⊙ maximum mass star. For the PKDD model producing the softest
EoS among the considered coupling models, the astrophysical maximum mass constraint is not
satisfied with UK̄ ≥ −140 MeV. Within the framework model considered in this work, the
upper limit for UK̄ in case of DD-ME2 model is −160 MeV.
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