
4

Reciprocity between heavier

baryons and meson condensation in

dense matter

4.1 Introduction

Due to large densities reached in the core region of compact stars, new hadronic degrees
of freedom are expected to nucleate in addition to the nucleons. One such possibility is the
onset of hyperons, as initially suggested in ref.-Ambartsumyan and Saakyan [1960]. This occurs
in the inner core of compact stars at about (2−3)n0. Even though the presence of hyperons in
compact stars may seem to be unavoidable, it leads to an incompatibility of the theory with the
observations of massive pulsars mentioned above, as is evidenced by many studies which used
either phenomenological [Glendenning, 1985; Weber and Weigel, 1989; Knorren et al., 1995;
Balberg and Gal, 1997; Zhou et al., 2008] or microscopic [Schulze et al., 1995; Baldo et al., 1998;
Vidaña et al., 2000; Sammarruca, 2009; Dapo et al., 2010] approaches. Specifically, hyperons
lead to a softening of the EoS and imply a low value of the maximum mass of compact stars,
below those observed. This problem is known as the “hyperon puzzle”. The studies prior to the
discovery of massive pulsars, the work during the last decade focused mainly on models which
provide sufficient repulsion among the hadronic interactions which guarantees stiffer EoS and
larger maximum masses of hypernuclear stars; these have been carried out mostly within the
covariant density functional theory [Weissenborn et al., 2012; Bonanno and Sedrakian, 2012;
Colucci and Sedrakian, 2013; van Dalen et al., 2014; Oertel et al., 2015; Chatterjee and Vidaña,
2016; Fortin et al., 2016; Chen et al., 2007; Drago et al., 2014; Cai et al., 2015; Zhu et al., 2016;
Sahoo et al., 2018; Kolomeitsev et al., 2017; Li et al., 2018b; Li and Sedrakian, 2019; Ribes
et al., 2019; Li et al., 2020]. But microscopic models have also been employed in works by
Yamamoto et al. [2016]; Shahrbaf et al. [2020].

Another fascinating possibility of the onset of non-nucleonic degrees of freedom is the
appearance of stable ∆-resonances in the matter. Whether ∆-resonances play any role in the
NSs is still a matter of debate Li et al. [2018b]; Motta et al. [2020]. Early works Glenden-
ning [1985]; Glendenning and Moszkowski [1991] indicated that the threshold density for the
appearance of ∆-resonances could be as high as (9 − 10) n0. More recent works [Li et al.,
2018b; Drago et al., 2014; Drago et al., 2014; Cai et al., 2015] have shown that indeed these
non-strange baryons may appear in nuclear matter at density in the range (1− 2) n0.

In this chapter, we explore the possibility of (anti)kaon condensation in β-equilibrated
∆-resonance admixed hypernuclear matter in the core region of compact stars within the frame-
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work of RMF model. This chapter is arranged as follows. In sec.-4.2 we briefly describe
the density-dependent RMF formalism and its extension to (anti)kaons condensation in ∆-
resonances admixed hypernuclear matter followed by the coupling parameter estimations in
sec.-4.3. Sec.-4.4 is devoted to numerical results and their discussions. The conclusions and
future perspectives are given in Sec. 4.5. The work presented in this chapter is reported in
ref.-Thapa et al. [2021].

4.2 Formalism

In this section, we extend the density-dependent RMF model to study the transition
of matter from hadronic to (anti)kaon condensed phase in β-equilibrated ∆-resonance ad-
mixed hypernuclear matter. The matter composition is considered to be of the baryon octet
(b ≡ N,Λ,Σ,Ξ), ∆-resonances (∆ ≡ ∆++,∆+,∆0,∆−), (anti)kaons (K̄ ≡ K−, K̄0) alongside
leptons (l) such as electrons and muons. The strong interactions between the baryons as well
as the (anti)kaons are mediated similar as in nuclear matter case by the isoscalar-scalar σ,
isoscalar-vector ωµ and isovector-vector ρµ meson fields. The additional hidden strangeness
mesons (σ∗, ϕµ) are considered to mediate the hyperon-hyperon as well as (anti)kaon-hyperon
interactions. It has been reported in ref.-Schaffner and Mishustin [1996] that the role of σ∗

meson in hyperon-hyperon interaction is very weak. So, to have some insight in this aspect we
have investigated the influence of additional strange isoscalar-scalar meson. The Lagrangian
density consisting of the baryonic and leptonic parts is given by [Glendenning, 1996; Li et al.,
2018b]

L =
∑
b

ψ̄b(iγµD
µ
(b) −m∗
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∑
∆

ψ̄∆ν(iγµD
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(4.1)

where the fields ψb, ψl, ψ
ν
∆ correspond to the baryon octet, lepton (Dirac) and ∆-baryon

(Rarita-Schwinger) fields. Unlike particles of the baryon octet and leptons (spin-1/2 parti-
cles), the ∆-resonances have spin of 3/2. So, to explain the dynamics of such particles Rarita-
Schwinger equation [Rarita and Schwinger, 1941] has to be considered as Dirac equation fails
to explain the same. mb, md and ml represent the bare masses of members of baryon octet,
∆-quartet and leptons respectively. The Lagrangian density for the (anti)kaons is described in
sec.-3.2. The covariant derivative in eq.-(4.1) is defined as

Dµ(j) = ∂µ + igωjωµ + igρjτ j · ρµ + igϕjϕµ (4.2)

with j denoting the baryons (b,∆). The density-dependent coupling constants are denoted
by gpj where ‘p’ index labels the mesons. The Dirac, Rarita-Schwinger effective baryon and
(anti)kaon masses are given by

m∗
b = mb − gσbσ − gσ∗bσ

∗,

m∗
∆ = m∆ − gσ∆σ,

m∗
K = mK − gσKσ − gσ∗Kσ

∗.

(4.3)
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In the RMF approximation, the meson fields obtain expectation values are given by
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∑
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(4.4)

where ns = ⟨ψ̄ψ⟩ and n = ⟨ψ̄γ0ψ⟩ denote the scalar and vector (number) densities respectively
as defined in chapters-2 and 3. The chemical potential of the j-th baryon is

µj =
√
p2Fj

+m∗2
j +ΣB, (4.5)

where ΣB = Σ0 +Σr denotes the vector self-energy with

Σ0 = gωjω0 + gϕjϕ0 + gρjτ j3ρ03, (4.6)

Σr =
∑
b

[
∂gωb
∂n

ω0nb −
∂gσb
∂n

σnsb +
∂gρb
∂n

ρ03τ b3nb +
∂gϕb
∂n

ϕ0nb

]
+
∑
∆

(ψb −→ ψν
∆). (4.7)

Here, eq.-(4.7) is the rearrangement term which is required in case of density-dependent meson-
baryon coupling models to maintain the thermodynamic consistency as already discussed in
sec.-2.4.

As already discussed in chapter-2, to describe the dense NS matter the conditions
which are necessary to maintain weak β-equilibrium between different particle species without
strangeness being conserved are given by the relation [Glendenning, 1996]

µj = µn − qjµe (4.8)

where qj is the charge of the j-th baryon and which translates to

µe = µn − µp = µµ,

µΣ+ = µ∆+ = µp,

µΣ− = µΞ− = µ∆− = µn + µe,

µ∆++ = µp − µe,

µΣ0 = µΞ0 = µΛ0 = µ∆0 = µn.

(4.9)

In case of (anti)kaons, the threshold conditions are governed by the strangeness changing pro-
cesses are discussed in sec.-3.2. The charge neutrality condition due to inclusion of (anti)kaons,
heavier strange and non-strange particles along with leptons is modified as∑

b

qbnb +
∑
∆

q∆n∆ − nK− − ne − nµ = 0. (4.10)
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The total energy density due to the fermionic part is given by
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∑
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(4.11)

And the energy density contribution from the (anti)kaonic matter is

εK̄ = m∗
K(nK− + nK̄0) (4.12)

giving the total energy density as ε = εK̄ + εf . Now, because (anti)kaons being bosons are in
the condensed phase at T = 0, the matter pressure is provided only by the baryons and leptons
and is given by the Gibbs-Duhem relation

pm =
∑
j≡b,∆

µjnj +
∑
l

µlnl − εf . (4.13)

4.3 Coupling parameters

In the density dependent RMF model implemented in this work, DD-ME2 Lalazissis
et al. [2005] coupling parametrization is incorporated. We have chosen this parametrization
due to the reasons that, it reproduces the parameter estimations of nuclear symmetric as well
as isospin asymmetric matter at nuclear saturation density which are in good agreement with
recent experimental findings Gal et al. [2016]. The other reason is the capability to fulfil the
massive ∼ 2 M⊙ NS constraint. The coupling functional dependence of the scalar σ, vector
ω and isovector-vector ρ-mesons on density are discussed in sec.-2.4. The parameters of the
meson-nucleon couplings in DD-ME2 parametrization model is given in table-2.3. Since the
nucleons do not couple to the strange mesons, gσ∗N = gϕN = 0. The masses of the additional
hidden strangeness mesons are taken as mσ∗ = 975 MeV and mϕ = 1019.45 MeV. Table-4.1
provides the mass, electric charge and isospin of the different exotic particles considered in this
work.

Table 4.1: Properties of the various exotic particles considered in this study.

Particles Bare mass (MeV) Charge (e) Isospin

Λ 1115.68 0 0
Σ+ 1189.37 1 1
Σ0 1192.64 0 0
Σ− 1197.45 −1 −1
Ξ0 1314.86 0 1/2
Ξ− 1321.71 −1 −1/2

K−, K̄0 493.69 −1, 0 1/2, 1/2
∆−,∆0,∆+,∆++ 1232 −1, 0, 1, 2 −3/2,−1/2, 1/2, 3/2
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4.3.1 Hyperon coupling constants

Due to inadequacy of reliable knowledge regarding the hyperon-nucleon as well as
hyperon-hyperon interactions, the coupling estimations in this regard still remains an open
question. For the meson-hyperon vector coupling parameters, we incorporated the SU(6) sym-
metry and quark counting rule following previous works of Schaffner et al. [1994] which provide

1

2
gωΛ =

1

2
gωΣ = gωΞ =

1

3
gωN ,

2gϕΛ = 2gϕΣ = gϕΞ = −2
√
2

3
gωN ,

1

2
gρΣ = gρΞ = gρN , gρΛ = 0.

(4.14)

The scalar meson-hyperon couplings can be calculated from the fits of their respective
optical potentials in nuclear matter within a particular model. In this work, we have considered
the optical potentials of Λ, Ξ, Σ in symmetric nuclear matter as

U
(N)
Λ (n0) = −30 MeV, U

(N)
Ξ (n0) = −14 MeV, U

(N)
Σ (n0) = +30 MeV, (4.15)

at saturation density respectively following ref.-Li et al. [2018a]. The scalar hyperon-meson
couplings considered in this study are compatible with the recent hypernuclei experiment find-
ings as compiled in refs.-Feliciello and Nagae [2015]; Gal et al. [2016]. Recently ref.-Friedman
and Gal [2021] reported an attractive optical potential depth of Ξ-hyperons in SNM to be
≳ −20 MeV. For a more recent review on the aspects of strangeness in dense matter, the
reader may refer to Tolos and Fabbietti [2020]. The scalar strange meson σ∗–Λ coupling is
evaluated from the measurements on light double-Λ nuclei and fitted to the optical potential
depth UΛ

Λ (n0/5) = −0.67 MeV Li et al. [2018a] and further constraining the σ∗–Ξ and σ∗–Σ
couplings via the relation

gσ∗Y

gϕY
=
gσ∗Λ

gϕΛ
, Y ∈ {Ξ,Σ}. (4.16)

Table-4.2 provides the numerical values of the meson-hyperon couplings at nuclear
saturation density, where RσY = gσY /gσN , Rσ∗Y = gσ∗Y /gσN denote the scaling factors for
non-strange and strange scalar mesons coupling to hyperons respectively.

Table 4.2: Scalar meson-hyperon coupling constants for DD-ME2 parametrization.

Λ Ξ Σ

RσY 0.6105 0.3024 0.4426
Rσ∗Y 0.4777 0.9554 0.4777

4.3.2 ∆-resonances coupling constants

Because experimental information on the ∆-resonance is scarce, the meson-∆ baryon
couplings are treated as parameters. Refs.-Nakamura et al. [2010]; Koch and Ohtsuka [1985];
Wehrberger et al. [1989] have reported the data to constrain meson-∆ baryon couplings at n0
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based on pion-nucleus scattering, electron scattering on nuclei and excitation studies of ∆-
quartet experiments. Recent studies [Drago et al., 2014; Klähn et al., 2006; Kolomeitsev et al.,
2017] on this aspect have reported the ∆-potential (V∆) in nuclear medium to be in the range

−30 MeV + VN (n0) ≤ V∆(n0) ≤ VN (n0), (4.17)

with VN (n0) being the nucleon potential at saturation density and the values of factor Rσ∆ −
Rω∆ to be between 0 and 0.2 with Rσ∆ = gσ∆/gσN and Rω∆ = gω∆/gωN . Many works
Drago et al. [2014]; Kolomeitsev et al. [2017]; Li et al. [2018b]; Ribes et al. [2019]; Chen et al.
[2007]; Cai et al. [2015]; Raduta [2021] have considered the ranges for Rω∆ ∈ [0.6 − 1.2] and
Rρ∆ ∈ [0.5 − 3.0]. For recent development regarding ∆-potential in dense matter, the reader
may refer to Cozma and Tsang [2021]. In the subsequent discussion we consider Rω∆ = 1.10
and Rρ∆ = 1.00 for vector-meson couplings. For the scalar meson-∆ baryon couplings we use
two values of Rσ∆ = 1.10, 1.23 corresponding to V∆ = VN and 5/3 VN respectively. Similar to
the nucleons, ∆-resonances do not couple to σ∗, ϕ-mesons, i.e, Rσ∗∆ = Rϕ∆ = 0.

4.3.3 (Anti)kaon coupling constants

The meson-(anti)kaon couplings are considered as density-independent. The vector
meson-(anti)kaon coupling parameters are adapted similarly as discussed in sec.-3.3. For the
scalar meson-(anti)kaon coupling constants, we calculate by fitting to the real part of K−

optical potential at n0. We have chosen a K− optical potential range of −120 ≤ UK̄ ≤ −150
MeV in this work and numerical values of gσK for the mentioned optical potential range is
provided in table-4.3.

Table 4.3: Scalar σ meson-(anti)kaon coupling parameter values in DD-ME2 parametrization at n0.

UK̄ (MeV) −120 −130 −140 −150

gσK 0.4311 0.6932 0.9553 1.2175

Since, the (anti)kaons possess strange quarks, so the (anti)kaons will interact via the
mediation of the additional hidden strange force mediating mesons. The scalar σ∗-meson cou-
pling to (anti)kaon is estimated from the decay of f0(925) as gσ∗K = 2.65 and that for the
vector ϕ-meson coupling is obtained from the SU(3) relation of the quark model as gϕK = 4.27
[Schaffner and Mishustin, 1996].

4.4 Results and discussion

In this section, we report our numerical results for matter composition with (anti)kaons
and (a) Nucleons + Hyperons (NY), (b) Nucleons + Hyperons + ∆-resonances (NY∆) for
varying values of (anti)kaon optical potentials. The case of pure nuclear matter with (anti)kaons
is already discussed in chapter-3. From calculations, it is found that the phase transition to
(anti)kaon condensed phase is of the second-order for both NY and NY∆ compositions. In all
the calculations the K−-meson is observed to appear before the onset of K̄0.

Table-4.4 provides the threshold densities of (anti)kaons for different values of ∆-baryon
as well as UK̄ potentials for three matter compositions, viz. N, NY and NY∆. As already
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Table 4.4: Threshold densities, nu for (anti)kaon condensation in N, NY and NY∆ matter for different
values of ∆-potentials and K− optical potential depths UK̄(n0).

Config. → NK̄ NYK̄ NY∆K̄
Rσ∆ = 1.10 Rσ∆ = 1.23

UK̄ ↓ nu(K
−) nu(K̄

0) nu(K
−) nu(K̄

0) nu(K
−) nu(K̄

0) nu(K
−) nu(K̄

0)
(MeV) (n0) (n0) (n0) (n0) (n0) (n0) (n0) (n0)

−120 3.00 4.89 − − − − − −
−130 2.85 4.65 − − − − 5.86 6.79
−140 2.72 4.42 3.97 6.95 4.26 6.92 4.37 5.05
−150 2.59 4.19 3.06 5.59 3.33 5.39 3.90 4.37
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Figure 4.1: The effective energy of (anti)kaons as a function of baryon number density in NY∆ matter
for ∆-potential values Rσ∆ = 1.10 (top panels) and Rσ∆ = 1.23 (bottom panels). Left
and right panels show the energies of K− and K̄0 respectively. The chemical potential
of electron for the same matter composition is depicted by the dashed curve. The solid,
dash-dotted, dotted lines represent the UK̄ values of −130,−140,−150 MeV respectively.

discussed in chapter-3, the (anti)kaons in nucleonic matter appears as early as ∼ 2.6 n0 with
UK̄ = −150 MeV. The onset of hyperons pushes the threshold densities of (anti)kaons to higher
densities in comparison to cases with only nucleonic matter. It is observed that the (anti)kaons
do not appear at all in case of UK̄ = −120 MeV for NY and NY∆ matter compositions.
(Anti)kaons are observed to appear only after UK̄ = −130 MeV with Rσ∆ = 1.23. This
happens as the higher ∆-potential shifts the onset of hyperons to higher densities making the
way for the (anti)kaons. In all the cases considered, it is observed that with the inclusion of
∆-resonances into the composition of matter the threshold densities of onset of (anti)kaon is
shifted to higher densities.

Fig.-4.1 shows the in-medium (effective) energies of K̄ mesons as a function of baryon
(vector) number density in NY∆ matter described by the DD-ME2 coupling model. With the
increase in the values of UK̄ , the density threshold for the onset of the (anti)kaons is shifted to
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Figure 4.2: Pressure as a function of energy density (EoS) for zero-temperature, charge-neutral NY
matter (solid lines), NY∆ matter with ∆-potential Rσ∆ = 1.10 (dashed lines) and Rσ∆ =
1.23 (dash-dotted lines). The three panels correspond to different values of (anti)kaon
potential: UK̄ = 0 (left panel), UK̄ = −140 (middle panel), and UK̄ = −150 MeV (right
panel).

lower densities.

The EoSs with NY and NY∆ matter compositions in the absence as well as in presence
of (anti)kaon degrees of freedom are shown in fig.-4.2. When compared for the cases with
(anti)kaons in N (please refer to left panel of fig.-3.9) and NY matter as in middle and right
panels of fig.-4.2, it may be observed that the role of (anti)kaons in softening of dense matter
EoS for the latter case is significantly less in comparison to the former one. This is due to the
same reason that hyperon threshold densities are earlier than (anti)kaon ones. In the case with
no (anti)kaons in matter, the EoSs of NY∆ matter is stiffer than the EoS of NY matter in the
high-density regime and the opposite is true in the low-density regime. The middle and right
panels of fig.-4.2 include (anti)kaons with potential values UK̄ = −140,−150 MeV respectively.
It is seen that the onset of (anti)kaon condensation softens the EoS, which is marked by a
change in the slope of EoSs beyond the condensation threshold. Furthermore, the softening is
more pronounced in the case of NY∆ composition, which reverses the high-density behavior
seen in the left panel: the EoS with NY∆ composition is now the softest among all considered
cases. It is further seen that the higher the value of UK̄ the more pronounced is the softening
of the EoSs. This is because of the fact that higher UK̄ favours larger presence of (anti)kaons
which softens the dense matter EoSs.

The mass-radius (M -R) relations corresponding to the EoSs in fig.-4.2 were obtained
by solving the TOV equations for static non-rotating spherical stars and are shown in fig.-4.3.
For the crust region, the Baym, Pethick and Sutherland (BPS) [Baym et al., 1971b] and Baym,
Bethe, Pethick (BBP) [Baym et al., 1971a] EoSs are implemented following thermodynamic
consistency. The inclusion of additional exotic degrees of freedom reduces the maximum mass
of NSs in comparison to nucleonic matter from 2.5 M⊙ to ∼ 2 M⊙. Following the comparison
of EoSs with (anti)kaons in N and NY matter as in previous paragraph, the TOV solutions for
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Figure 4.3: The mass-radius relationships for EoS shown in fig.-4.2 for NY matter (solid lines), NY∆
matter with ∆-potential Rσ∆ = 1.10 (dashed lines) and Rσ∆ = 1.23 (dash-dotted lines).
The three panels correspond to different values of (anti)kaon potential: UK̄ = 0, i.e.,
no (anti)kaon condensation, (left panel), UK̄ = −140 (middle panel), and UK̄ = −150
MeV (right panel). The astrophysical constraints from GW190425 [Abbott et al., 2020a],
GW190814 [Abbott et al., 2020b], MSP J0740+6620 [Cromartie et al., 2020], PSR J0030+
0451 [Miller et al., 2019; Riley et al., 2019], low-mass X-ray binaries [Steiner et al., 2018]
are marked by the shaded regions.

the same can be seen in fig.-3.10 and 4.3. The lowering of maximum mass configuration consid-
ering similar optical potential of (anti)kaons in dense matter is a clear evident of EoS softening
due to inclusion of strange baryons. The compactness is also observed to be enhanced due to
the appearance of ∆−-resonance at lower densities. The parameter values of the maximum
mass stars are provided in a tabulated form in table-4.5. From tables-4.4 and 4.5 it can be
inferred that K− meson appears in all the EoS models with UK̄ = −140,−150 MeV. But K̄0

meson does not appear in the hypernuclear star with UK̄ = −140 MeV and ∆-baryon admixed
hypernuclear star with Rσ∆ = 1.10 and UK̄ = −140 MeV. Consistent with the (anti)kaon
softening of the EoS seen in fig.-4.2 the maximum masses of the stars with NY∆ composition
and (anti)kaon condensation lie below those without ∆ resonances, which is the reverse of what
is observed when (anti)kaon condensation is absent.

From the analysis above, we conclude that compact stars containing (anti)kaons are
consistent with the astrophysical constraints set by the observations of massive pulsars, the
NICER measurements of parameters of PSR J0030 + 0451, the low-mass X-ray binaries in a
globular cluster, and the gravitational wave event GW190425. Although we do not provide
here the deformabilities of our models, from the values of the radii obtained it is clear that our
models are also consistent with the GW170817 event. Finally, our models are inconsistent with
the interpretation of the light companion of the GW190814 binary as a compact star. Including
the rotation even at its maximal mass-shedding limit will not be sufficient to produce a∼ 2.5M⊙
mass compact star, the readers can refer to refs.-Sedrakian et al. [2020]; Li et al. [2020].

Fig.-4.4 shows the particle composition in NY matter with (anti)kaons as a function of
baryon number density and for UK̄ = −140,−150 MeV. At low densities, before the onset of
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Table 4.5: Properties of maximum mass stars for various compositions and values of (anti)kaon poten-
tial UK̄(n0). For each composition/potential value the enteries include: maximum mass (in
units of M⊙) the radius, and central number density.

Configuration → NYK̄ NY∆K̄
Rσ∆ = 1.10 Rσ∆ = 1.23

UK̄ ↓ Mmax R nc Mmax R nc Mmax R nc
(MeV) (M⊙) (km) (n0) (M⊙) (km) (n0) (M⊙) (km) (n0)

0 2.008 11.651 6.107 2.021 11.565 6.160 2.049 11.226 6.349
−140 2.005 11.652 6.096 2.019 11.566 6.151 2.032 11.343 6.214
−150 1.994 11.664 6.13 2.006 11.61 6.143 1.973 11.448 6.028
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Figure 4.4: Particle abundances ni (in units of n) as a function of normalized baryon number density
in NY matter for values of UK̄ − 140 MeV (top panel) and −150 MeV (bottom panel).

strange particles, the charge neutrality is maintained among the protons, electrons and muons.
At somewhat higher density (≥ 2n0) Λ and Ξ− appear (because of the repulsive nature of
Σ-potential in dense nuclear matter, Σ-baryons do not appear in the composition). Finally,
the (anti) kaons and Ξ0 appear in the high-density regime (≥ 4n0). Comparing the upper
and lower panels of the figure, we observe that the higher |UK̄ | value implies a lower density
threshold of the onset of (anti)kaon, as expected. The onset of (anti)kaons also affects the
population of leptons; K− are efficient in replacing electrons and muons once they appear,
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thus they contribute to the extinction of leptons, which occurs at lower densities for higher
values of |UK̄ |. In the case of UK̄ = −150 MeV, the Ξ− fraction is seen to be strongly affected
by the appearance of K− mesons. This is expected as K− being bosons are more energetically
favorable for maintaining the charge neutrality compared to fermionic Ξ−. The composition
in the case of UK̄ = −140 MeV, does have K̄0 mesons (nu ∼ 6.95 n0) whereas for UK̄ = −150
MeV, K̄0 appears at onset density nu ∼ 5.59 n0 which leads to an additional softening of the
EoS.
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Figure 4.5: Same as fig.-4.4 but for NY∆ matter for Rσ∆ = 1.10 (top panel) and Rσ∆ = 1.23 (bottom
panel) and fixed value of UK̄ = −140 MeV.

Fig.-4.5, which is analogous to fig. 4.4, shows the particle population in NY∆-matter as
a function of baryon number density for UK̄ = −140 MeV. It is observed that for Rσ∆ = 1.10
only ∆− resonance appears, whereas for Rσ∆ = 1.23 the onset of the entire quartet of ∆-
resonances is possible. It seen that in general the ∆-resonances effectively shift the threshold
densities of hyperons to higher densities, thus diminishing their role. This concerns both the
neutral Λ as well as Ξ−-hyperon. This shift is stronger for larger values of Rσ∆. Resonances also
suppress the lepton fraction by lowering the density at which they disappear in NY∆-matter,
this effect being magnified for larger values of V∆. In the high-density regime the negative
charge is provided by ∆−–Ξ−–K− mixture and it is seen that the rapid increase in the K−

population suppresses the ∆−-Ξ− abundances for Rσ∆ = 1.23, as kaons are energetically more
favorable than the heavy-baryons. Note also that the onset of K̄0 meson abruptly decreases
the abundance of Ξ−, as seen in the lower panel; (in the upper panel, i.e. for UK̄ = −140 MeV
and Rσ∆ = 1.10, the K̄0 mesons do not appear). There is some qualitative differences between
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Figure 4.6: Same as fig.-4.5 but for a larger (absolute) value of potential UK̄ = −150 MeV.

the two cases Rσ∆ = 1.10 and 1.23: (a) the ∆− baryon disappears at higher matter densities
for Rσ∆ = 1.10 but its abundance is almost constant in for Rσ∆ = 1.23; (b) the Λ hyperon
dominates over the neutron fraction at higher density for ∼ 5.5 n0 in case of Rσ∆ = 1.10
compared to ∼ 4.5 n0 in case of Rσ∆ = 1.23.

Fig.-4.6 shows the same as in fig.-4.5 but for UK̄ = −150 MeV. The particle fractions
show identical trends as in fig.-4.5 until the appearance of (anti)kaons. The larger potential
favors earlier onset of (anti)kaons in matter; for example, the K− sets in before the Ξ− and it
is now the dominant negatively charged component shortly after the density increases beyond
the onset value. The effect of the onset of K̄0 on the Ξ− and ∆−, which is mediated via changes
in the abundances of K−, is seen clearly again. As before, for a large value of Rσ∆ = 1.23, all
the members of the quartet of ∆-resonances are present in the matter composition. Another
notable fact is the complete extinction of Ξ−,0 baryons, which is consistent with the trends
seen in figs.-4.4 and 4.5. Interestingly, in the case Rσ∆ = 1.23 the (anti)kaons abundances are
the largest among all particles in the high-density regime, which leads also to the softening of
the EoS observed above.

Fig.-4.7 shows the (anti)kaon effective mass as a function of normalized baryon number
density for various strengths of UK̄ with different matter compositions. The effective mass of
(anti)kaons tends to decrease rather steeply in case of higher strengths of UK̄ . It is observed
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potential value is fixed at Rσ∆ = 1.23.

that in the low-density regime, the (anti)kaon effective mass decreases relatively quickly in the
case of ∆-resonances admixed matter compared to that with the only hyperonic matter. The
reason is the larger scalar potential values arising from the onset of additional non-strange
baryons at lower densities. And at higher densities, the (anti)kaon effective mass values are
observed to be larger in the former case than the latter one. This may be attributed to the
delayed onset of hyperons because of the ∆-resonances appearance.
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The matter pressure as a function of energy density for different matter compositions
with and without σ∗ meson for the hyperon-hyperon interactions is shown in fig.-4.8. Being
a scalar, σ∗ meson makes the EoS softer as is evident from the figure. It is observed that
incorporating σ∗ meson rules out the possibility of (anti)kaon phase transition with UK̄ = −120
MeV. This is because in the case with σ∗-meson, the difference of chemical potential of neu-
tron and proton approaches zero as we go higher in density which eradicates the possibility of
(anti)kaons appearance (refer to fig.-4.10). The phase transition from the purely hadronic to
(anti)kaon condensed phase is second-order.

The results of mass-radius (M -R) relationship obtained by solving the TOV equations
for non-rotating spherical stars corresponding to the EoSs in fig.-4.8 are presented in fig.-4.9. It
is observed that in both cases of NY for NY∆ matter the inclusion of σ∗ meson leads to lower
maximum mass. It is also seen that the addition of ∆’s reduces the radius of the of the stars
and mildly increases the maximum mass, which consistent with the findings without (anti)kaon
condensation. Table-4.6 provides the stellar maximum masses, radii and corresponding central
densities evaluated from the EoSs in fig.-4.8 with UK̄ = −120 MeV.

Table 4.6: Properties of maximum mass stars for various compositions, UK̄ = −120 MeV, Rσ∆ = 1.23
in the cases with σ∗ meson and without. In both cases we list the maximum mass, the
radius and central number density.

Config. NYK̄ NY∆K̄ (Rσ∆ = 1.23)
Mmax R nc Mmax R nc
(M⊙) (km) (n0) (M⊙) (km) (n0)

σωρϕ 2.124 11.673 5.973 2.137 11.023 6.538
σωρσ∗ϕ 2.008 11.651 6.107 2.049 11.226 6.349
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Figure 4.10: Particle abundances ni (in units of n) as a function of normalized baryon number density
in NY matter for value of UK̄ = −120 in the case of σωρϕ exchange (top panel) and
σωρσ∗ϕ (bottom panel). (Anti)kaons are absent in the second case.

Fig.-4.10 shows the particle abundances in case of hypernuclear matter with UK̄ = −120
MeV with and without σ∗ meson. The main qualitative difference is that K− appears for
n ≥ 5.4 n0 in the first case and it does not appear up to n ∼ 7 n0 in the second case.
Consequently, the charge neutrality is maintained between e − Ξ− + K− and protons in the
first case and only e − Ξ− and protons in the second case. Given by more than one order of
magnitude smaller abundance of electrons, the abundances of Ξ− and protons almost coincide
in the second case. Another feature seen in fig.-4.10 is that the electron and muon populations
disappear faster with increasing density in the case where the σ∗ meson is included.

Fig.-4.11, which is similar to fig.-4.10, shows the composition of particles in NY∆matter
and for UK̄ = −120 MeV. In this case also, (anti)kaons are observed to appear only in the EoS
where σ∗ meson is excluded. It is seen, that the main difference between the two cases is
that σ∗ driven interactions prefer lower threshold density of Ξ0 and their larger fraction, which
effectively leads to an exclusion of (anti)kaons in the density range considered. Unlike the case
with only hypernuclear matter, in this case the lepton fractions are unaffected by the exclusion
or inclusion of σ∗ meson, because of the negative charge is supplied by the ∆−-resonance.
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Figure 4.11: Same as fig.-4.10 but for NY∆ matter with Rσ∆ = 1.23.

4.5 Summary

In this chapter, we discussed the second-order phase transition to Bose-Einstein conden-
sation of (anti)kaons in hypernuclear matter with and without an admixture of ∆-resonances
within the framework of density-dependent RMF theory. The resulting EoS, matter compo-
sition, and the structure of the associated static, spherically symmetrical star models were
presented. The strong interactions viz. baryon-baryon and (anti)kaon-baryon are handled on
the same footing. The K− optical potentials (−120 ≤ UK̄ ≤ −150 MeV) at nuclear saturation
density are considered in a range which fulfills the observational compact star maximum mass
constraint (∼ 2M⊙).

We find that the (anti)kaon condensates cannot appear in the hypernuclear matter,
within our parametrization, if UK̄ ≤ −130 MeV. K̄0 condensation is absent in maximum mass
compact stars with UK̄ = −140 MeV. The inclusion of hyperons into the matter composition
shifts the onset of (anti)kaons to higher density regimes in comparison to the case without
hyperons, i.e. only nuclear matter, c.f. to chapter-3. For higher UK̄ values, the appearance of
both the (anti)kaons becomes possible in the maximum mass models. The K− meson fraction
is seen to dominate over the Ξ− baryon for high UK̄ strengths. This can be attributed to the
fact that the K− particle being bosons is more favored over the fermionic Ξ−-particles.
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Next, in the case of ∆ baryon admixed hypernuclear matter, the onset of (anti)kaons is
shifted to even higher densities compared to only hyperonic matter. (Anti)kaon condensation
is absent with UK̄ ≤ −120 MeV. The condensed phase is observed to appear in matter with
UK̄ = −130 MeV and Rσ∆ = 1.10. However, K̄0 condensation is absent for this particular
UK̄ strength. Larger values of ∆-potentials Rσ∆ imply that the entire ∆-resonances quartet
is present in matter. It is also observed that in a particular matter composition (UK̄ = −150
MeV, Rσ∆ = 1.10), the onset of K− occurs even before that of Ξ− particles. Moreover, for
higher strengths of UK̄ and Rσ∆, the ∆-baryons and (anti)kaons take over the Ξ−,0 particles
leading to their complete suppression in the matter. Lepton populations are suppressed with
increasing density more quickly in case of higher strengths of Rσ∆. We find that the effective
mass of (anti)kaons is weakly dependent on the composition of matter and decreases almost
linearly in the relevant density range 2 ≤ n/n0 ≤ 6, which reflects the density dependence of
the scalar potential.

The influence of the strange scalar interaction mediating meson σ∗ on the composition
and EoS are twofold: firstly, including the σ∗ meson softens the EoS significantly leading to
lower maximum masses of compact stars. Secondly, exclusion of σ∗ meson allows for (anti)kaon
K− to appear for weakly attractive potential strength UK̄ ∼ −120 MeV in both the hyperonic
as well as ∆ admix hypernuclear matter.

As indicated in the discussion (sec.-4.4), the present model with a suitable choice of
parameters characterizing the (anti)kaon condensate is consistent with the currently available
astrophysical constraints. The present model can, therefore, be used to model physical processes
in (anti)kaon condensate featuring ∆-admixed hypernuclear star. Examples include cooling
processes, bulk viscosity, thermal conductivity, to list a few.
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