Contents

	Page
Declaration	lii
Certificate	V
Acknowledgements	Vii
Contents	Ix
List of Figures	Xiv
List of tables	Xvi
List of Symbols	Xvii
List of Abbreviations	Xviii

Abstract

20

Chapter 1 : Introduction		23 – 36
1.1	Motivation of work	23
1.2	Photovoltaics and Solar thermal	23
1.3	Solar thermal and other renewable sources of energy	24
1.4	Concentrated Solar Plants (CSP) Tower	24
1.5	Software and relevant Codes for Analysis of Concentrating Solar Power	27
	Technologies	27
1.6	Objective of work	30
1.7	Justification of work	30
1.8	Solar Thermal Energy generation, the Indian story	31
1.8.1	National Review	31
1.9	The research gap areas in the heliostat field design using optical ray	32
	tracing approach	
1.9.1	General review regarding Solar Thermal Power in India	35
1.10	Outline of this thesis	36

Chapter 2 :Opt	tics, related Thermodynamics ,Ray tracing and SunShape	37 - 54
2.1	Earth Sun Geometry 2.1.1 Declination angle (δ) 2.1.2 Equation of time (EOT) and Hour angle (ω) 2.1.3 Latitude (Ψ) and Longitude angle 2.1.4 Elevation /Altitude angle α and Azimuth angle Φ	37
2.2	Radiation from the Sun 2.2.1 Solar Constant	41 42
2.3	Ray Tracing 2.3.1 Ray Tracing by Computer 2.3.2 Eikonal equation 2.3.3 Monte Carlo Ray tracing (MC) in Tracepro	43

2.4	Sun Shape	50
	2.4.1 Brief discussion on the software and their literature performance	
2.5	Exergy and its connect with temperature	52

Chapter 3 :Co	ncentrating Solar Power (CSP) field, Losses and Mathematics involved	55 - 99
3.1	Heliostats and CSP field design	55
	3.1.1 Heliostats	
3.2	Beam Up technology	58
	3.2.1 Line focus technology 3.2.1.1 Parabolic Trough (PT) [[]	
	3.2.1.2 Linear Fresnel Reflector (LFR	
	3.2.2 Point focus technology	
	3.2.2.1 Power Tower	
	3.2.2.2 Parabolic dish-Engine	
3.3	Beam Down technology	62
	3.3.1 Inclined Plane (IP)	
	3.3.2 Conic section	
	3.3.2.1 Hyperboloid as secondary mirror	
	3.3.2.2 Ellipsoid	
	3.3.2.3 Comparison between Hyperboloid and Ellipsoid as SR	
3.4	Optical field design	67
3.5	Spatial orientation of the Heliostat field	68
J•J	3.5.1 Radial Staggered (RS)	
	3.5.2 Cornfield	
	3.5.3 Sunflower	
3.6	Receiver	71
	3.6.1 Flat receiver	<i>,</i> ,
	3.6.2 Cavity receiver	
	3.6.3 Bladed receiver	
	3.6.4 Cylindrical Receiver	
3.7	Angular orientation of the Heliostat	76
	3.7.1 Azimuth - Elevation (AE) method	
	3.7.2 Spinning - Elevation (SE) method	
3.8	Losses involved and aberrations in the Optical field	76
	3.8.1 Losses related to solar field setup	
	3.8.1.1 Shadowing	
	3.8.1.2 Blocking (η_B)	
	3.8.1.3 Cosine factor (η_F)	
	3.8.1.4 Reflectance (η_R)	
	3.8.1.5 Atmospheric attenuation (η_A)	
	х	

3.8.1.6 Spillage

3.8.2 Losses related to solar field setup

3.8.2.1 Spherical Aberration3.8.2.2 Coma3.8.2.3 Distortion3.8.2.4 Optical Astigmatism3.8.2.5 Curvature of field

3.8.3 Losses related to Optical field setup

3.8.3.1 Slope errors3.8.3.2 Specularity errors

3.9	Mathematics involved for generation of field layout	
	3.9.1 Solar spatial coordinates	86
	3.9.2 Solar angular coordinates	
	3.9.3 Heliostat spatial coordinates	
	3.9.3.1 Radial Staggered	
	3.9.3.2 Cornfield	
	3.9.3.3 Sunflower	
	3.9.4 Heliostat angular coordinates	
	3.9.4.1 Eulerian angles	
	3.9.4.2Quaternions	
	3.9.5 Heliostat curvature	
	3.9.5Conic section	
	3.9.5.1 Hyperboloid equation used for Beam Down geometry	
	3.9.5.2 Ellipsoid equation used for Beam Down geometry	
3.10	Non-Imaging optics (NIO)	95
2	3.10.1 Advantages of NIO for solar energy concentration	55
	3.10.2 Edge-Ray algorithm to generate a CPC	
	3.10.3 Invariance, Etendue and Solar Concentration	
	3.10.4 Geometrical Concentration Factor (GCF	
Chapter 4 :	Ray tracing work performed	100-138
	Solar angles and Shadow map	102
4.1	4.1.1 Solar angles	102
	4.1.2 Shadow mapping	
	4.1.3Typical Meteorological Year (TMY) and Daily Normal Irradiance (DNI)	
4.2	Beam up	102
•	4.2.2.1 Generation of field of capacity of 100 Kw power	103

4.2.2.2 Generation of field of capacity 1.4 MW power4.2.3 Cornfield4.2.4 Estimation and optimization of heliostat field for 400 kW to 550 kW optical power using ray tracing method.

4.2.5 A novel uniform illumination on receivers in central tower systems using ray tracing approach

4.2.6Ray Tracing Approach for the Performance Evaluation of Bladed and Flat-Plate Receiver in Central Tower Systems 4.2.7 Sunflower geometry

4.3	Beam Down 4.3.1 Inclined plane as secondary mirror. 4.3.2 Hyperboloid as secondary mirror 4.3.3 Ellipsoid as secondary mirror 4.3.4Use of CPC together with conic geometry for Beam Down work	123
4.4	 Comparative study 4.4.1 Study and comparison of Heliostat field design performance for beam up and beam down as mentioned accordingly 4.4.2 Comparison of optical efficiency and Stagnant temperature generation over four Heliostat sizes 4.4.3 Comparison between Hyperboloid and Ellipsoid field efficiency for the work as Beam Down was done for twelve chosen cases 4.4.4 Efficiency Comparison on the basis of Heliostats size 	133
Chapter 5:	Temperature profile of the receiver: Detection at far-field using	139-149
	infrared detectors 5.1 Estimation of receiver temperature	147
Chapter 6 :	Conclusions and future scope of work 6.1 Duck Curve and Levelized Cost Of Electricity (LCOE)	150-153 152
	 Appendix A.1 SolarPILOT A.1.1 Design with SolarPILOT A.2. SolTrace A.3 SolarPILOT and SolTrace A.3.1 TracePro, SolarPoilor and Soltrace : A comparative study A.4 Angles for the purpose of rays to move from one point to the other A.5 Mirror area (m²) vs Land area (m²) plot A.6 Below is the grid source setup used for field design A.7 Relevance and importance of curvature on the Heliostat A.8 Excel script used in the thesis work A.9 National and international selected work A.10 Ray tracing work performed in this thesis A.11 Beam down work with Non Imaging Optics (CPC) A.12 Variety of field pattern designed A.13 Validation of uncertainties in efficiency A.14 Correction of Fig 4.13 regarding shadow area plot of Heliostat of measurement 5 x 5 : 25 m² and 4 x 4 : 16 m² 	155-169
	List of publications	170

170 171 - 179

References