List of Figures

Figures	Title	page
3.1	Generation of a Minkowski like structure after first iteration using MATLAB (a) Iteration-0 and (b) Iteration-1	15
3.2	Geometrical design of the proposed UWB antenna (a) Initial and (b) Optimized structure	16
3.3	Reflection coefficient S_{11} variation for different width of Minkowski like structure strip (W_s)	16
3.4	Reflection coefficient S_{11} variation for different feed gap thickness (d)	17
3.5	Reflection coefficient S_{11} variation for different ground length (L_g)	17
3.6	Reflection coefficient S_{11} variation with frequency (with and without slots)	18
3.7	Simulated surface current distribution in geometry at resonant frequency (a) 1.7 GHz, (b) 3.2 GHz, (c) 5.0 GHz, and (d) 9.2 GHz	19
3.8	Photograph of the fabricated antenna (a) Front view (b) Bottom view	20
3.9	Measured and simulated reflection coefficient of antenna with various frequency	20
3.10	Simulated Input Impedance of antenna with variation in frequency	21
3.11	Measured and simulated radiation patterns E-planes (x-y plane) and H-planes (y-z plane) at	
	resonant frequencies (a) 1.7 GHz, (b) 3.2 GHz, (c) 5 GHz and (d) 9.2 GHz	22
3.12	Measured gain of the proposed antenna	23
3.13	Geometry of the optimized hexagonal fractal antenna	24
3.14	Evolution of the proposed antenna (a) antenna without fractal geometry, (b) antenna with	24
	fractal geometry and (c) antenna with fractal geometry and rectangular slot	
3.15	Simulated return loss characteristics for different antenna shown in Figure 3.12	25
3.16	Current distribution in geometry at resonant frequency (a) 4.5 GHz, and (b) 10 GHz	26
3.17	Photograph of the fabricated antenna (a) Front view (b) Bottom view	26
3.18	Comparison of the simulated and measured return loss characteristics of the antenna	27
3.19	Simulated Impedance variation of the proposed antenna with frequency variation	27
3.20	Measured radiation patterns with co polarization (—) and cross polarization (—) for H-	
	planes and E-planes at (a) 4.5 GHz, and (b) 10 GHz	28
3.21	Measured gain of the proposed fractal UWB antenna	28
3.22	Minkowski like fractal as applied to the edges of Octagonal geometry	29
3.23	Geometry of the proposed Octagonal fractal antenna (a) Initial (b) Optimized structure	29
3.24	Simulated return loss variation with frequency (with and without notch)	31
3.25	Simulated surface current distribution in geometry at resonant frequency (a) 4.2 GHz, and (b) 9.4 GHz	31
3.26	Photograph of the fabricated antenna (a) Front view (b) Bottom view	32
3.27	Measured and simulated return loss of proposed UWB antenna	33
3.28	Simulated result of real and imaginary impedance	33
3.29	Radiation patterns for the proposed fractal UWB antenna with co-polar and cross polar at	
	resonant frequencies (a) 4.2 GHz and (b) 9.4 GHz	34
3.30	Measured gain of the proposed antenna	35
3.31	Geometry of proposed fractal UWB antenna	36
3.32	Recursive Generation of Minkowski structure (a) Iteration-0 (b) Iteration-1 and (c) Iteration-2	36
3.33	Evolution of Antenna structures with the application of Minkowski structure as applied to the edges of Octagonal geometry (a) Antenna-0 (b) Antenna-1 and (c) Antenna-2	36
3.34	Return loss characteristics of the antenna for different antenna structure generated in the evolution process	37
3.35	Surface current distribution at (a) 3.4 GHz, (b) 6.5 GHz and (c) 10.5 GHz	37
3.36	Fabricated prototype of the proposed antenna	38
3.37	Measured and simulated return loss of antenna with various frequencies	38
3.38	Measured radiation patterns with co-polar ($-$) and cross polar ($-$) for resonant	20
2 20	Measured Gain of proposed fractal LIWB antenna	29 40
5·39 5 40	Geometry of proposed fractal LIWR antenna	40
2 /1	Recursive Generation of Sierninski structure (a) Iteration of (b) Iteration of (c) Iteration a	41 47
3.42	Sierpinski structure as applied to the edge of Octagonal geometry (a) Original Geometry,	42 42
	(b) After 1° iteration and (c) After 2' iteration	

3.43	Simulated S_{11} of the antenna structures shown in Figure 3.42	42
3.44	Surface current distributions at (a) 3.7 GHz, (b) 6.9 GHz and (c) 10.3 GHz	43
3.45	Fabricated prototype of the proposed UWB antenna	43
3.46	Measured and simulated return loss of antenna with various frequencies	44
3.47	Measured Gain of the proposed fractal UWB antenna	44
3.48	Measured radiation patterns with co-polar (—) and cross polar () for resonant	
	frequencies at (a) 3.7 GHz, (b) 6.9 GHz and (c) 10.3 GHz	45
3.49	Recursive Generation of Koch structure (a) Iteration-0, (b) Iteration-1 and (c) Iteration-2	47
3.50	Koch structure as applied to the edges of Octagonal geometry (a) Initiator, (b) After 1 st	
	iteration, (c) After 2 nd iteration	47
3.51	Geometry of the proposed Octagonal fractal antenna	48
3.52	Photograph of the fabricated antenna (a) Front view (b) Bottom view	49
3.53	Simulated and measured return loss of antenna at various frequencies	49
3.54	Simulated result of real and imaginary impedance	50
3.55	Measured gain of the proposed antenna as a function of frequency	50
3.56	Radiation patterns for the proposed fractal UWB antenna with co-polar (——) and cross	
	polar () at resonant frequencies (a) 3.6 GHz, (b) 7.2 GHz and (c) 11.5 GHz	51
3.57	The optimized structure of the proposed fractal UWB antenna	52
3.58	Evolution of the fractal UWB antenna with application of Koch geometry (a) Antenna-o, (b)	
	Antenna-1, (c) Antenna-2 and (d) Antenna-3	53
3.59	Simulated $ S_{11} $ of the different antenna structures in the evolution	54
3.60	Surface current distribution of the fractal UWB antenna at (a) 4.3 GHz, (b) 7.2 GHz and (c)	
7.64	10 UHZ	55
3.01	Massured and simulated IS 1 of the proposed antoppa	55
3.02	Simulated real and imaginary impedance of the proposed antenna	50
3.03	Simulated real and imaginary impedance of the proposed antenna Massured radiation pattern with co-polarization $(-)$ and cross polarization $(-)$ at (a) 4.2	50
5.04	() and $()$ at (a) 4.5	E7
2 65	Measured Gain of the proposed antenna versus frequency	57 57
ر 0،ر 1 1	Geometry of the proposed LIWB antenna (a) Badiator portion (b) Ground portion	67
4.7	Evolution of the LIWB antenna (a) The initial octagonal shaped antenna. (b) The antenna	02
-• -	with rectangular notch in ground plane (c) The antenna with fractal Minkowski and (d) The	
	antenna with fractal notch and dual C-shaped notch	62
4.3	Simulated VSWR characteristics of the different antenna structure generated in the	
15	evolution	63
4.4	Recursive generation of Minkowski fractal structure (a) Initial Structure and (b) After first	-
	iteration	64
4.5	Simulated surface current distribution in geometry at notch frequency (a) 3.5 GHz and (b)	
	5.5 GHz	65
4.6	Simulated VSWR value of the antenna for variation in H	65
4.7	Simulated VSWR value of the antenna for variation in L_1	65
4.8	Photograph of the fabricated antenna (a) Top View (b) Bottom view	66
4.9	Comparison of the simulated and measured VSWR characteristics of the proposed antenna	66
4.10	Simulated Impedance variation of the proposed antenna with frequency variation	67
4.11	Measured radiation patterns with co polarization (—) and cross polarization () for H-	
	planes and E-planes at (a) 4.7GHz (b) 7.5 GHz and (c) 10 GHz	68
4.12	Measured gain of the proposed antenna	68
4.13	Geometry of the proposed dual notched fractal UWB antenna	69
4.14	Photograph of the fabricated antenna (a) top view and (b) bottom view	70
4.15	Simulated surface current distribution at (a) 3.5 GHz and (b) 5.5 GHz	70
4.16	Simulated VSWR characteristic of the proposed fractal UWB antenna for different C ₂	71
4.17	Simulated VSWR of the proposed fractal UWB antenna for different C ₃	71
4.18	Measured and simulated VSWK of the proposed antenna	72
4.19	measured radiation pattern with co-polarization ($-$) and cross-polarization () at	
4.30	resonant requencies (a) 4.0 GHz, (D) 6.9 GHz, and (C) 9.9 GHz	/3
4.20	Measured gain of the proposed Antenna Coometry of the proposed reconfigurable fractal UN/P antenna	/3
5.1	deometry of the proposed recomputation indication of Signal and (c)	//
2.2	Iteration-2	77
		11

5.3	Iteration wise evolution of the proposed antenna (a) After iteration-0, (b) After iteration-1,	
	(c) After iteration-2 and (d) Final geometry	78
5.4	Simulated return loss variation of the antennas shown in Figure 5.3	78
5.5	Distribution of surface current vector at band notch frequencies (a) 3.7 GHz, (b) 5.5 GHz and (c) 8.2 GHz	79
5.6	Measured and simulated VSWR of the proposed antenna for different reconfigurable cases of Table 5.1	80
5.7	Measured radiation pattern of the tested antenna at resonant frequency with co-	
	polarization (——) and cross-polarization (— —) (a) 4.7 GHz (b) 6.8 GHz and (c) 10.1 GHz	81
5.8	Measured gain of the reconfigurable fractal UWB antenna	81
5.9	Geometry of the proposed reconfigurable fractal UWB antenna	83
5.10	Positions of p-i-n diodes in the ground plane of the presented antenna for switching states	83
5.11	Evolution of the proposed antenna (a) Antenna-1, (b) Antenna-2, (c) Antenna-3 and (d) Antenna-4	84
5.12	Simulated return loss variation of the antennas shown in Figure 5.11	84
5.13	Distribution of surface current vector at band notch frequencies (a) 4.1 GHz and (b) 8.2 GHz	85
5.14	Measured and simulated VSWR of the proposed antenna for different reconfigurable cases of Table 5.3	86
5.15	Measured gain of the re-configurable fractal UWB antenna	86
5.16	Measured radiation pattern of the tested antenna at resonant frequency with co-	
6.1	polarization (——) and cross-polarization (— —)(a) 4.7 GHz (b) 6.8 GHz and (c) 10.1 GHz The optimized geometry of the proposed UWB MIMO antenna	87 91
6.2	The iterative generation of the Minkowski fractal slot (a) Iteration-0, (b) Iteration-1 and (c) Iteration-2	91
6.3	Simulated S-parameters variation of proposed fractal UWB MIMO antenna with and without ground stub (a) S_{11} and S_{22} , (b) S_{12}/S_{21}	92
6.4	Simulated surface current distribution when port1 is excited at 4.1 GHz (a) without L-shape stub	97
6.5	Simulated surface current distribution at 5.5 GHz band notch frequency (a) port 1 is excited,	02
6.6	Eabricated prototype of the proposed LIMA (a) front view and (b) Bottom view	92
67	Comparison of Measured and Simulated S-parameters (a) S., and S., and (b) S./S.	95
6.8	Measured gain of the proposed UWB MIMO antenna	94
6.9	Radiation characteristics of the UWB MIMO antenna in E-plane and H-plane at 4.1 GHz	,
-	(), 6.8 GHz () and 12 GHz () (a) port 1 is matched, (b) port 2 is matched	95
6.10	ECC and capacity loss of the proposed UWB MIMO antenna	96
6.11	Geometry of the proposed fractal UWB MIMO antenna	97
6.12	Recursive Generation of Minkowski structure (a) Iteration-0, (b) Iteration-1 and (c) Iteration-2	97
6.13	Evolution of the fractal monopole of antenna structure with the application of Minkowski geometry at the edges of Octagonal geometry (a) Initiator, (b) After 1 st iteration and (c)	07
6.14	Simulated S-parameters variation of proposed fractal UWB MIMO antenna (a) S_{11} and S_{22} ,	97
6.15	Simulated surface current distribution (a) at 4 GHz without L-shape stub (b) at 4 GHz with	90
6 16	L-shape stud (c) at 10.2 GHZ without L-shape stud (d) at 10.2 GHZ with restate stud	99
6.10	and (b) without notch structure	99
6.17	Photograph of the fabricated UWB MIMO antenna (a) front view and (b) rear view	100
6.10	Comparison of simulated and measured S-parameters result (a) S_{11} and S_{222} (b) S_{21}/S_{12}	100
6.19	($$), 6.4 GHz ($$) and 10.2 GHz ($$) (a) port 1 is matched; (b) port 2 is	101
6 20	Maccined Measured gain of the proposed LIWB MIMO antenna	101
6.21	Capacity loss and ECC of the proposed fractal LIWB MIMO antenna	102
6.27	Geometry of the proposed fractal UWB MIMO antenna	102
6.23	Simulated S-parameters variation of proposed fractal UWB MIMO antenna with and	10)
-2	without ground stub (a) S_{11} and S_{22} , (b) S_{21} and S_{12}	104
6.24	Simulated surface current distribution (a) at 4 GHz without L-shape stub when port1 is	,
-	excited. (b) at 4 GHz with L-shape stub when port1 is excited. (c) at 4 GHz without L-shape	

	stub when port2 is excited, (d) at 4 GHz with L-shape stub when port2 is excited, (e) at 9.6 GHz without L-shape stub when port1 is excited, (f) at 9.6 GHz with L-shape stub when	
	port1 is excited, (g) at 9.6 GHz without L-shape stub when port2 is excited and (h) at 9.6	105
6 75	Simulated surface current distribution at $E \in CHz$ notch frequency (a) nort t is excited and	105
0.25	(b) port 2 is excited	106
6.26	Photograph of the fabricated UWB MIMO antenna (a) front view and (b) rear view	106
6.27	Comparison of simulated and measured S-parameters result (a) S., and S., and (b) S., and	
'	S_p	107
6.28	Measured gain of the proposed UWB MIMO antenna	107
6.29	Radiation characteristics of the UWB MIMO antenna in E-plane and H-plane at 4.0 GHz	-
	(→ →), 6.4 GHz (– → –) and 9.6 GHz (– · → · –) (a) port 1 is matched and (b) port 2 is	
	matched	108
6.30	ECC of the proposed UWB MIMO antenna	108
6.31	Capacity Loss of the proposed UWB MIMO antenna	109
6.32	The optimized geometry of the proposed 4×4 FUMA	110
6.33	Simulated S-parameters variation of proposed fractal UWB MIMO antenna (a) S $_{ m 11}$ with and	
	without ground stub and (b) S ₂₁ , S ₃₁ , S ₄₁ with and without ground stub	111
6.34	Simulated surface current distribution at 3.9 GHz when port 1 is excited (a) without stub	111
6 35	Simulated surface current distribution at 5.5 GHz notch frequency with port 1 excited and	
0.))	port 2, 3 and 4 terminated	117
6.36	Photograph of the fabricated UWB MIMO antenna (a) front view, and (b) rear view	112
6.37	Comparison of simulated and measured S-parameters result (a) S_{11} and (b) S_{12} , S_{13} , and S_{14}	113
6.38	Radiation characteristics of the UWB MIMO antenna in E-plane and H-plane at 3.9 GHz	
	(), 6.7 GHz () and 10 GHz () when port 1 is excited and other ports are	
	terminated	113
6.39	Measured gain of the proposed UWB MIMO antenna	114
6.40	Capacity loss and ECC of the proposed FUMA	114
7.1	Optimized geometry of the presented antenna	119
7.2	Layered Human body tissue model with antenna on its top	119
7.3	Measurement setup in anechoic chamber	120
7.4	Return loss variation of the antenna in free space and in the proximity of human body tissue model	121
7.5	Measured S_{21} of the fractal UWB antenna at (a) Abdomen for d = 0 mm, (b) Abdomen for d	
	= 5 mm, (c) Abdomen for d = 10 mm, (d) Near forehead for d = 0 mm, (e) Near forehead for	
	d = 5 mm, (f) Near forehead for d = 10 mm, (g) Chest for d = 0 mm, (h) Chest for d = 5 mm,	
	(i) Chest for d = 10 mm and (j) Free space	123
7.6	Measured and simulated radiation pattern in the xy-plane and xz-plane at 4.3, 7.2 and 10	
	GHz resonant frequencies (a) 4.3 GHz, (b) 7.2 GHz and (c) 10 GHz	124
7.7	Group delay of the fractal antenna with and without human body tissue model	124
7.8	SAR variation with distance (a) Local SAR and (b) Avg. SAR	125
7.9	Optimized geometry of the presented antenna	126
7.10	Return loss variation of the antenna in free space and in the proximity of human body tissue model	127
7.11	Measured S_{21} of the fractal UWB antenna at (a) Abdomen for d = 0 mm, (b) Abdomen for d	
	= 5 mm, (c) Abdomen for d = 10 mm, (d) Near forehead for d = 0 mm, (e) Near forehead for	
	d = 5 mm, (f) Near forehead for $d = 10 mm$, (g) Chest for $d = 0 mm$, (h) Chest for $d = 5 mm$,	
	(i) Chest for d = 10 mm and (j) Free space	129
7.12	Measured and simulated radiation pattern in the xy-plane and xz-plane, when port 1 is	
	excited and port 2 is matched with 50Ω load, at resonant frequencies (a) 4 GHz, (b) 6.5 GHz	
-	and (c) 9.6 GHz	130
7.13	ivieasured and simulated radiation pattern in the xy-plane and xz-plane, when port 2 is	
	excited and port inis matched with 50s2 load, at resonant frequencies (a) 4 GHZ, (D) 6.5 GHZ	474
714	and (c) yiu unz Group delay of the fractal antenna with and without human body tissue model	131
/•י4 7 15	SAR variation with distance (a) Local SAR and (b) $\Delta v\sigma$ SAR	2 כו רבו
ניי,		- <u>-</u> 2