
 

4 
Evaluation Framework 

 
 
 
 
 

In the previous chapters, the state of the art for cross layer design techniques has been 
discussed and a new technique has been proposed based on RF front end impairments. While the 
benefits of such cross layer techniques have been generally accepted, it is important that such 
changes are done with caution, as discussed in the paper by [Kawadia and Kumar, 2005]. While 
making protocol changes that benefit from cross layer design optimisations, it is important to 
understand legacy issues and maintain backwards compatibility with existing systems. It is also 
important that any proposed change is specified through a clear programming interface so that 
the modularity of the architecture is maintained. Various physical layer concerns, such as 
temporal and asymmetric nature of radio front end impairments, which should be considered 
while  doing cross  layer research have  been  described  by  [Mandke et al,  2007].  Incorrectly 
characterizing system losses caused by these impairments can cause the upper layers to adapt 
and change behavior in a sub-optimal manner, resulting in poor overall performance. These 
cautionary remarks are not meant to discourage researchers from proposing new cross layer 
protocol changes; rather they are intended to emphasize the point that the proposed changes have 
to be very carefully evaluated. To achieve this, it is important that researchers first conduct a 
thorough theoretical analysis of the proposed protocol change and then implement and validate 
their idea on an experimentation system. Many such systems have been proposed in the 
literature, some of which are developed commercially and some which are developed as part of 
university research have been described in this chapter. However, it is often hard to choose the 
right experimentation system for a particular use case. To overcome this challenge, an evaluation 
framework which presents a graphical view of evaluating such systems has been proposed. 
Researchers can use such a framework to perform trade-off analysis between different 
requirements and pick a system best optimized for their use-case. Key thesis contributions 
described in this section are 

 A framework to evaluate different experimentation systems in an objective way is 
presented. Six evaluation metrics, i.e., cost, latency, throughput, hardware agility, software 
portability, and extensibility, are presented. This framework provides an objective way to 
evaluate different systems, so that research community can choose the system that is most suited 
for their use-case. In the absence of this structured approach, it is difficult to pick the system that 
is best suited for a particular application requirement. 

 Survey of several experimental systems is presented with the objective of evaluating 
these systems on the framework. These systems are compared along the different metrics of cost, 
latency, and throughput. Results are presented in the form of a table and spider chart, which 
serve as a visual aid for researchers to understand the strengths and weaknesses of each system 
along the different metrics and pick the system best suited for their use-case. 

 
 
 

4.1 Need for experimentation systems 
While the benefits of cross-layer modifications are well known, caution has to be exercised 

when making these changes and disturbing the highly structured and well architected 7-layer 
OSI model. In this section, the importance of a good architectural design is discussed. The John 
Von Neumann architectural for computing systems, the 7-layer Open Systems Interconnect (OSI) 
model for internet, Shannon s architecture for communication systems, and the plant controller 
feedback paradigm for control systems are all good examples of successful architectures. All of 
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these architectures have resulted in longevity of the systems and allowed  independent research 
and development of various modules. Architecture in a system design refers to the breaking 
down of a system into modular components and systemically specifying the interface between 
the components. Modularity allows rapid research and development at each layer without 
researchers at each level having to understand all of the underlying components. Authors in 
[Kawadia and Kumar, 2005] contend that a good architecture can lead to proliferation of systems. 
Conversely, an integrated system needs to be hand crafted for every change. Even a small change 
in one section has ripple effects on the rest of the system and this prevents fast evolution. Such a 
system eventually reaches innovation saturation. While the von Neuman architecture has 
proliferated the growth of sequential computing architecture, Valiant points out  that  the  lack 
of such an architecture for parallel computation is one of the reasons why it has not successfully 
proliferated  [Valiant,  1990].   The   7-layer   OSI   model   is   another  example  of  how  a  good 
architecture has helped in proliferation of internet and wired architecture. Even the TCP/IP 
architecture is fundamentally based on the classic OSI model; it only merges some of these blocks 
into  single  layer.  In  his  widely cited  work  on  capacity  of  discrete  memoryless  channels 
[Shannon, 2001], Shannon has also made another key contribution. This was the separation of 
the information source coding from the transmitter error correction coding. This allowed 
techniques for source coding, such as gzip, rar to evolve at their own pace and on their own 
preferred system, whereas error correction and modulation schemes evolved at the transmitter 
side  on  an  implementation  system  of   their  choice.  All  that  was  needed  was  a  careful 
specification of a formalized application programming interface (API) between these two layers. 

 
Likewise, feedback architecture is critical in the functioning of control systems design. 

Control system design is a process that starts with developing a mathematical model that 
describes the physical system. Next step is to analyze the mathematical model to learn about their 
dynamic  characteristics. The  final  step is  to  create  a  controller to  achieve  certain  dynamic 
characteristics. A typical control system is shown in Figure 4.1. In this figure, control system refers 
to the controller, actuators and the sensors. Actuators command the physical plant to take an 
action and the output of the plant is captured using the sensors. These sensors then provide the 
feedback signal which is compared with the reference signal to provide appropriate input to the 
controller. While the actual design of the controller, actuators and sensors will vary with system, 
this fundamental feedback system architecture forms the core of plant design. It is this 
fundamental architecture that has enabled the massive proliferation of control systems in wide 
range of applications. The 7 layer OSI model provided a perfect architecture for wired networks 
and it has by default become the standard for wireless networks as well. However, wireless 
networks function differently from wired networks. Using the same 7 layer OSI model for 
wireless networks is appealing because of its simplicity and abstraction. The multihop decoding 
and forwarding is simple to understand and implement. However, it has presented its own set of 
challenges with respect to routing, power control and the need for a medium access control 
(MAC). There is a fundamental tradeoff between performance and architectural needs. One needs 
to be careful in pushing for cross layer design without focus on the right architecture underneath 
as it can lead to brittle behavior. Some general principles to assist in the process of deciding the 
merits of cross layer design proposals has been presented in [Kawadia and Kumar, 2005].
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Figure 4.1: Controller System Based on Feedback 
 

 
 
 

First one is to understand the law of unintended consequences. In the field of social 
sciences, unintended consequences are outcomes that are not the ones originally intended by a 
purposeful action. Unintended consequences can be positive, negative or perverse. Positive 
outcome is an unexpected benefit, negative outcome is  an  unexpected  detriment  occurring  in 
addition to the desired effect, and a perverse effect is contrary to what was originally intended. 
There are many examples of unintended consequences, such as medical research [Joan et al, 2004], 
social networks [Bernard et al, 2009] and education [Smith et al, 1991] to name a few.  Likewise, 
breaking the structured OSI model by allowing cross interactions may lead to unintended 
consequences, if not handled appropriately [Kawadia and Kumar, 2005]. Dependency graph is 
the second problem that one needs to keep track of. A dependency graph is a directed graph 
representing dependencies of various nodes to each other. In a dependency graph, the cycles of 
dependencies (also called circular dependencies) lead to a situation in which no valid evaluation 
order exists, because none of the objects in the cycle can be evaluated first. If a dependency graph 
does not have any circular dependencies, it forms a directed acyclic graph, and an evaluation 
order may be found by topological sorting. Most topological sorting algorithms are also capable 
of detecting cycles in their inputs, however, it may be desirable to perform cycle detection 
separately from topological sorting in order to provide appropriate handling for the detected 
cycles. Dependency graphs with cyclic dependencies can lead to unstable situations. If a 
particular parameter is controlled and used by two different adaptation loops, then this could 
lead to a source of conflict. Adaptive control theory suggests a solution to this problem through 
the usage of time-scale separation [Johan et al, 2008; Kumar, 1985]. Consider a process C as shown 
Figure 4.2a, where two processes A and B are trying to control it. If these two control signals are 
separated in time as shown in the Figure 4.2b, then stability can be achieved. However, this 
requires detailed and careful analysis. Cross layer design proposals could potentially result in 
such situations and have to be handled carefully. A final word of caution is related to the 
development of spaghetti, unstructured code resulting from these cross layer interactions. If not 
managed properly, it can lead to a system that is not maintainable in the long run. In summary, 
one can argue that cross layer design proposals are required to advance the art of wireless 
communications, but a careful approach must be taken to take care of the issues listed above. 

 
Over the past 5 years, active research is being conducted in the area of platforms that 

enable cross layer design such as the SORA platform [Tan et al, 2011], the beeCube platform 
[Rotham and Cheng, 2011], MICA platform [Hill and Culler, 2012], testbed for cross layer design 
in multihop networks [De et al, 2005] to name a few. The test platforms which spur active research 
by its ability to modify or add new capabilities are the ones that truly enhance the capabilities of 
the research fraternity. Section 4.2 presents a generalized evaluation framework for comparing 
different experimentation systems. Section 4.3.1 presents the hardware architecture and new
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research findings enabled by the Airblue platform, designed by researchers at the Massachusetts 
Institute of Technology. Section 4.3.2 describes the Wireless Access Research Platform (WARP) 
designed by researchers at Rice University. Section 4.3.3 describes the HYDRA platform designed 
by researchers at the University of Texas at Austin. Section 4.4 presents some of the commercially 
available platforms. Finally, Section 4.5 compares the different systems using the evaluation 
framework described earlier. 

 
 
 
 

 
 

Figure 4.2a: Dependency on Process C from both Process A and Process B 
 

 
 
 

 
 

Figure 4.2b: Timescale Separation between Process A and Process B 
 
 
 
 

4.2 Evaluation Framework 
The past decade has seen a proliferation of many systems being developed for software 

defined radio research. Additionally, these systems have also been used for enabling research on 
cross layer protocols. The research community currently lacks a formalized methodology for 
objectively comparing such systems. One of the contributions of this thesis is to present an 
evaluation framework that will address this issue. In this section, six key evaluation metrics that 
define this framework are described. From a visualization perspective, these metrics are 
presented in the form of a spider-chart as shown in Figure 4.3. Such visualization graphs make it
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easy to compare a particular system with others at a glance. Each metric, as shown on the axis of 
this  graph, has  a maximum  value  of  10  and minimum value  of 0.  As  per this  evaluation 
framework, a higher value for a metric implies a better score for the particular SDR system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Evaluation Metrics 
 
 
 
 
1. Cost: This metric refers to the cost of ownership of the prototyping system. Cost of ownership 
refers to the cost of purchase, development and maintenance of the system. In the terminology 
used in this thesis, this does not include the upgrade cost. Ability to upgrade the system and the 
associated costs is captured independently in a different metric, which is described later. Cost is 
chosen as one of the key metrics because it defines the affordability of the system. Researchers 
often have to make a trade-off between functionality and cost. Creators of experimentation 
systems often add several features to their design. Although these features are useful for many 
applications, they tend to increase the overall cost of the system, to the extent that it goes out of 
reach of many researchers. There are various ways in which cost of experimentation system can 
be kept low, such as use of commercially available off-the-shelf technology and the ability to 
integrate commodity radios. 

 
2. Latency: Latency is defined as the delay between any two activities in a communication system. 
One specific example that is commonly used is the turn-around time between transmit and 
receive nodes. This evaluation metric refers to the smallest value of latency that can be 
implemented on the prototyping system. An experimentation system should ideally be capable 
of supporting latencies an order of magnitude better than the minimum latency required by the 
protocol. Latency is determined by both the speed and  deterministic nature of processing. 
Designers should ensure that their system supports features such as heterogeneous computing 
[Khokkar et al, 1993] and effective bus technology between compute nodes to achieve latency 
requirements of emerging applications such as cyber-physical systems. 

 
3. Throughput: Throughput, measured in bits/second, is defined as the amount of data transfer 
that can be sustained on a system. This metric refers to the ability of the system to transmit or 
receive data at a desired rate. As applications are constantly pushing the need for high streaming 
data rates, high throughput is fast becoming a very important aspect of communications system 
design research. It is important that an experimentation system offers users the ability to 
prototype new algorithms at desired streaming rates. Maximum achievable streaming rates are 
generally determined by parameters such as instantaneous acquisition bandwidth of the radio
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front end, sampling rate of the baseband analog to digital converter (ADC) and the type of 
heterogeneous processing units used, such as FPGA, DSP, or graphical processing units. It is 
equally important to think about the type of bus architecture that connects these units together. 
The type of bus chosen should be able to provide high throughput to meet the demands of latest 
communication standards. 
4. Hardware Agility: This metric refers to the ability of the system to allow users the flexibility to 

reconfigure input and output terminals during runtime. This capability is applicable for analog 
characteristics such as radio frequencies, power level, and sampling rate of the ADCs and digital 
to analog converters (DACs). One application for such frequency agility is in situations where 
researchers want to conduct experiments in the unlicensed Industrial Scientific Medical (ISM) 
band due to the availability of low-cost radio front ends in these bands. However, many 
commercial technologies such as Zigbee, wireless, cordless phones, and Bluetooth also operate in 
the same frequency range. Any experiment being performed in these bands should be carefully 
evaluated for possible interference. One approach to avoid this undesired behavior is to identify 
the region of least interference and tune the RF front end to operate in that region. Hardware 
agility can also be used for reconfiguring the digital input and output terminals which can be 
used to transmit a pre-determined word pattern. This can be useful for applications such as bit 
error rate estimation and pin diode reconfiguration for reconfigurable antenna arrays. An 
experimentation system should provide users the ability to achieve this through routing of 
control signals through the FPGA logic. 

 
5. Software Portability: Ability to leverage software developed by research community is a critical 
element for enabling cross layer research. Software portability metric refers to the ability of the 
system to allow porting of software across multiple homogeneous or heterogeneous compute 
nodes. As shown in Figure 4.4, a user of Platform A should be able to easily bring in code 
developed on Platform B (port-in) and vice-versa (port-out). For this to happen, the 
experimentation  system should  offer  system  design  software  experience,  which  allows  the 
software to be specified in various programming languages. For example, in some cases a text 
based programming language, such as C/C++/Matlab is ideal, whereas in some other cases a 
procedural language like VHDL could be ideal, and in yet other cases a state machine diagram 
approach may be more applicable. These various programming paradigms are referred to as 
hybrid models of computation [Lee et al, 1998]. The software support for any ideal 
experimentation system should be able to handle multiple models of computation so that the 
developed code is hardware agnostic and portable. 

 
 
 
 

 
 

Figure 4.4: Software Portability and Extensibility
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6. Extensibility: This metric refers to the ability provided by the system to easily extend (upgrade) 
its hardware and software capabilities. For good out-of-the-box experience, a system should 
present a stable start-up codebase. For example, researchers should be able to quickly build an 
OFDM transceiver by easily putting together basic PHY/MAC protocols either shipped as 
reference code or available as open source. The next step is to enable algorithm modifications, 
which may be needed to replace underperforming algorithms with new ones that meet tighter 
throughput or latency constraints. In some cases, FPGA-specific optimizations may be needed to 
meet specific resource usage and timing requirements of the FPGA. Such requirements demand 
extensibility of the hardware and software beyond its original intent. Such type of extensibility is 
generally enabled by two key features - a generalized hardware interconnect, such as GPIO, 
SFP/SFP+ or HDMI, which allows users to easily add new hard- ware capabilities to the platform; 
and a solid software architecture with well-defined and well documented interfaces between 
different blocks. An Object Oriented Programming (OOP) approach is ideal for such an 
architecture, as it allows scalability of the programming interface, while maintaining backwards 
compatibility. The system should also offer stable mechanism for error handling. In summary, 
software and hardware extensibility is essential to ensure shelf time of the system. 

 
Now that the key evaluation metrics are described, the next section describes various 

systems found in the literature. These systems have been classified into three categories, which 
are as follows: 

 
Academic: This category includes systems developed as part of research activities at 

universities all around the world. While this list is not exhaustive, this thesis focusses on the MIT 
Airblue system, UT-Austin Hydra system, and RICE WARP system. 

 
Commercial: This category includes systems developed by industry and sold 

commercially for scientific research activities. This thesis describes the Ettus Research USRP 
board, Nutaq SDR board, and beeCube miniBee board. 

 
Hobbyist: This category includes low cost boards centralized around a user community 

of open source enthusiasts. It is primarily targeted towards hobbyists. Examples in this category 
include systems such as hackRF [HackRF, 2014] and bladeRF [BladeRF, 2014]. 

 
Section 4.5 evaluates these systems using the evaluation framework described earlier. 

 
4.3 Academic Systems 

 

 
4.3.1 MIT Airblue Platform 

Airblue is a system developed by researchers at the Massachusetts Institute of Technology 
to aid cross-layer wireless protocol research. The design of this system is based on the principles 
of modular refinement, latency insensitive design, and data-driven control. Modular refinement 
is defined as the ability to make changes in one module of the system without having to 
understand or make changes to the rest of the modules in the system. Latency-insenstivity and 
data-driven control are two key properties that are essential for modular refinement in a new 
protocol [Ng et al, 2010], which are described next. 

 
Latency insensitivity is a property that enhances modularity of the system such that the 

design of a particular module does not depend on the time taken by the previous module. One 
way in which this can be achieved is by the usage of a FIFO buffer interface (handshake) unit 
between the two modules. This is a big advantage over latency sensitive systems in which one 
has to understand the timing constraints of the original implementation by purely examining its
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design. This is a very difficult process. The ability to synchronize between data and control is the 
second property needed for modular refinement. Modifications to the protocol to enable cross- 
layer research require new ways of sending control signals to the lower layers, unlike standard 
protocols where specific control and configuration paths are embedded in the design. An implicit 
synchronization can be achieved by calculating the time taken by data channel a-priori and 
ensuring that the control channel arrives at the right time. Such a system achieves high 
performance because additional circuitry is not needed to specifically handle synchronization, 
but makes it hard to add new controls. To overcome this problem, Airblue designers have 
proposed the technique of data-driven control. Instead of control and data signals being two 
independent signals, the idea is to embed the control signal with the data signal, as shown in 
Figure 4.5. The clear benefit of this approach is that synchronization of data and control is explicit 
and is forced by the packet, rather than relying on the hardware implementation. Such control 
signals can be embedded in the packet at different granularity levels as well. The concept of data- 
driven control is not new to hardware or software systems. The Click Modular Software [Kohler 
et al, 2000] uses the concepts of packet annotations to couple data and control packets together. 
Similarly, this technique is also used in software-defined radio based systems as described in 
[Nychis et al, 2009]. 

 
Figure 4.6 shows a block diagram of the system. The FPGA system is divided to run at 

three clock speeds, 20 MHz, 25 MHz, and 40 MHz. The device interface block is clocked at a speed 
of 20 MHz and is used to provide a generic interface between the digital baseband and analog RF 
front end. The next clock speed of 25 MHz is used to run the baseband processing block, the MAC 
Unit block, and the debug interface unit. The baseband processor implements the PHY layer, 
converting bit streams to digital baseband signal during transmission. On the receive side, the 
baseband processor performs the reverse operation. 
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Figure 4.5: Synchronized Data and Control Signals
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The MAC unit controls the receiving and transmitting phase of the baseband processor 
and also implements the sending of ACK signals. The debug interface unit collects other internal 
signals, representing the state of the system, and communicates this state to the host PC. The soft 
processor, implemented on the FPGA, runs at 40 MHz and handles off-chip communication 
signals. The baseband design is built using a set of open source modules from an OFDM 
Workbench [Ng et al, 2007]. The library has been written in Bluespec, which is a high-level design 
language that compiles into Verilog. It can be further translated into FPGA, ASIC, or software 
implementations using other tools [Rishiyur, 2004]. 

 
 
 
 

 

 
 

Figure 4.6: Hardware Architecture of the Airblue Platform 
 
 
 
 

The MAC implemented on Airblue has two key features that enable timely 
communication with the PHY layers. First, it is implemented in hardware, with dedicated low- 
latency channels to the baseband. Secondly, it is able to communicate with the baseband in a 
granular fashion, where the granularity is defined at byte level, rather than frame level. This 
enables the MAC to start processing data as soon as it is available. One of the challenges in a 
typical RF front end is that components such as the DACs, ADCs, and gain circuits are latency 
sensitive. If one changes the gain, it takes a few cycles before the correct gain value is reflected in 
the incoming signals. Additionally, different components demonstrate different timing features. 
Airblue abstracts the physical layer as a pair of bidirectional FIFOs to which the baseband can 
connect. The incoming FIFO provides radio samples from the receiver and the outgoing FIFO 
sends samples to the transmitter. The development platform used for Airblue is Intel s Architect 
Workbench (AWB), which is an open  source management tool [Thomas  et al, 1988]. AWB 
provides an interactive environment for configuring, building and running FPGA and general 
purpose processor co-designs. AWB also makes it easy to debug new modules being developed. 
In addition to supporting over-the-air operation, Airblue also makes it easy to use an online 
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channel emulator. Users can connect multiple transceivers to the channel simulator and simulate 
AWGN and fading environments.
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Some of the research activities that Airblue has enabled are described. The modular 
architecture of Airblue has enabled addition of custom modules, such as the interceptor, to the 
MAC. Modifications to the baseband PHY to add new blocks to compute and export SoftPHY 
hints [Jamieson, 2008] have been demonstrated on Airblue. Likewise, replacement of hard output 
Viterbi decoder algorithm with the BCJR algorithm [Bahl et al, 1974] has also been demonstrated 
on Airblue. All of these examples show the extensibility offered by Airblue to add custom 
algorithms. Airblue also has the ability to reconfigure the MAC during runtime through 
interrupts. Such a mechanism is useful in CMAP, where the MAC must first receive the headers 
of the ongoing transmission, and then switch to transmit mode if its pending transmission does 
not conflict with the ongoing transmission. Spinal codes [Perry et al, 2012] have been implemented 
on Airblue and it has been demonstrated that these codes can decode up to a rate of 10 Mbps. 
Spinal codes are a new class of rateless codes that enable wireless networks cope with time- 
varying channel conditions, without requiring any explicit bit rate selection. Traditionally, 
hardware designs partitioned across multiple FPGAs have suffered from low performance 
because of the inefficiency of maintaining cycle-by-cycle timing among discrete FPGAs. [Fleming 
et al, 2012] have presented a mechanism by which complex designs may be efficiently and 
automatically partitioned among multiple FPGAs using explicitly programmed latency- 
insensitive links. 

 
4.3.2 RICE WARP System 

Wireless open-Access Research (WARP) [Hunter et al, 2006] is a scalable and extensible 
system, with the ability to be programmed being one of its key features. WARP offers interaction 
between the PHY and MAC layers through a flexible interrupt driven interface, which enables 
evaluation of a large class of cross-layer protocols. Figure 4.7 depicts the WARP hardware. Block 
A depicts the main board which contains the Xilinx Virtex-II Pro FPGA board. This FPGA 
contains 8 Rocket I/O transceiver blocks, two PowerPC 405 processor blocks, 9,280 logic 
programmable slices, 88 multiplier blocks and 1,584 KB block memory size. The PHY layer of 
WARP is based on custom OFDM transceivers, which are intended for IEEE 802.11 a/g/n 
standards. The MAC protocols are implemented in C and interact with the PHY processing units 
and supporting peripherals in the FPGA fabric using the flexible interrupt driven interface. Block 
B represents four general purpose daughter-card slots in the FPGA board, which can be utilized 
to design radio, analog input/output and video functionality. The custom designed WARP radio 
is capable of supporting both the 2.4 GHz ISM and 5.8 GHz ISM bands with a 40 MHz bandwidth. 
Because there are four general purpose daughter-card slots, WARP can be extended to enable 4 x 
4 MIMO systems by tuning the radio front end. Block D represents the 10/100 Ethernet port bus 
interface from the WARP to the PC. 

 
Many  practical  experiments  have  been  implemented  on  WARP,  including  the  2x2 

Alamouti and 2x2 spatial multiplexing systems, with antenna selection capability. MAC protocols 
can be rapidly implemented through a state machine developed in C, which can then be compiled 
to run on one of the two PowerPC 405 cores. When downloaded onto the PowerPC, the MAC 
protocol directly communicates with the hardware peripherals. [Hunter et al, 2006] have created 
a flexible interface that provides user-level access to parameters common to most physical layers, 
in order to facilitate the development of new MAC protocols on WARP. Hence, WARP provides 
seamless flexibility in the development of cross-layer protocols such as SNR-based rate 
adaptation, advanced MIMO MAC protocols with beamforming and smart antenna selection 
features. Different medium access protocols such as ALOHA, Carrier Sense Multiple Access 
(CSMA), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), and Orthogonal 
Frequency Division Multiple Access (OFDMA) have also been implemented on WARP.
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Figure 4.7: Hardware Architecture of the Rice WARP platform 
 
 
 
 

Flexibility to create custom designs has resulted in many significant research findings 
based on WARP. ArgosV2 is a 64-antenna base station prototype and serves as a compact, 
powerful, and scalable multi-antenna research platform based on WARP [Shephard et al, 2013]. 
The modular architecture and real-time capability of ArgosV2 can support hundreds of base 
station antennas and tens of users with streaming applications. Researchers have leveraged the 
flexibility of WARP to overcome the challenge of extending full-duplex communication for long- 
range applications due to residual behavior from self-interference [Sahai et al, 2013]. [Kivayash et 
al, 2013] have presented the design and implementation of spyware communication circuits built 
into the widely used carrier sense multiple access with collision avoidance (CSMA/CA) protocol. 
The spyware has been implemented and evaluated on WARP using metrics such as 
implementation efficiency of encoder, robustness of communication scheme to heterogeneous 
CSMA/CA effects, and difficulty of covert channel detection. [Magistretti et al, 2012] have used 
the WARP to design, implement and evaluate a modified version of the IEEE 802.11 protocol 
(802.11ec) without control messages. Instead of explicit control messages, 802.11ec employs 
symbol sequences that can be correlated with the timing information. They have used WARP 
because it gives them the flexibility to perform a large number of experiments and compare the 
performance of their proposed standard with the existing standard. [Duarte et al, 2012] have 
provided an experiment-driven characterization of a full-duplex wireless system on WARP. 
Through experimental results, they show that as the received self-interference power increases, 
so does the average amount of cancellation for active cancellation techniques. They have also 
derived an experiment-driven model and performed capacity analysis of a full-duplex wireless 
system implemented using WARP with commercial off-the-shelf MIMO Radios. [Shi et al, 2009] 
have created models for synchronous CSMA (S-CSMA) using WARP. The flexibility of this 
system allowed them to measure the impact of clock drift on MAC parameters such as contention 
window size, control packet size and carrier sense regulated by usage of gated time. In addition 
to the above mentioned research outcomes, a large number of research platforms have also been 
developed based off WARP [Hershberger et al, 2013; Shishkin et al, 2011; Korakis et al, 2009]. 

 
4.3.3 UT Hydra System 

Hydra is a fully flexible wireless prototyping system developed at the University of Texas 
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at Austin [Mandke et al, 2007]. Hydra consists of a hardware board and PC-based software stack 
as shown in Figure 4.8. The software stack is implemented on a general purpose processor and 
contains implementation for the PHY, MAC and Network layers. FPGA or ASIC implementations
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used by other prototypes are high performance, but the trade-off is that they require experience 
with hardware description languages. To circumvent this problem, Hydra software stack is 
implemented using open source GNU Radio [Ettus Research, 2014] and Click Modular Software. 
The modular and open-source nature of these programs makes it easy for researchers to develop 
individual blocks and then leverage intellectual property (IP) available on the community. 
Additionally, GNU Radio stack also provides a convenient application programming interface 
for setting various parameters on the RF front end of Hydra, which is based on the Universal 
Software Radio Peripheral (USRP) board. The USRP has continuous frequency coverage in the 
ISM 2.4 GHz and ISM 5.8 GHz bands. The bus interface between the hardware board and 
software stack is USB 2.0. 

 
 
 
 

 
 

Figure 4.8: Architecture of the UT Hydra platform 
 
 
 
 

The hardware components of USRP include an FPGA, four high-speed ADCs and DACs. 
The RF front end can be programmed to provide various signal processing functionalities such 
as filtering, upconversion, and downconversion. Hydra can be further extended for synchronized 
multiple input multiple output (MIMO) capability by adding more USRP RF front ends. 

 
Some of the key research findings that have been enabled by Hydra are described next. 

[Mandke et al, 2007] have suggested temporal scaling, reciprocity, and cross-layer adaptation as 
three higher layer considerations that should be kept in mind when designing any cross-layer 
protocol. Temporal scaling refers to the time scale or granularity with which communication 
happens between the physical layer and the upper layers. Generally, temporal scaling is 
measured as a function of the time required to transmit and receive packages. However, it is also 
important to consider the amount of time that is taken to process the packets. This implies that 
the MAC layer has to appropriately tune its parameters such as inter-frame spacing, as the packet 
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sizes change. Secondly, many researchers generally assume that the measurement parameters 
estimated in the forward and reverse link in a bidirectional communication link are reciprocal.
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This implies that if one makes a particular measurement in the forward link, then this 
measurement can be considered as valid in the reverse link as well. Through various 
experimental results, [Mandke et al, 2007] have shown that the reciprocity assumption may not 
always hold true. Interference and variance in the RF hardware are the two main reasons that 
contribute to this asymmetry. In most cross-layer design algorithms, higher layers modify their 
behavior based on information received from the lower layers. The behavior is however not as 
simplistic and higher layers must be made aware of the degrees of freedom available, such as 
automatic gain control mechanisms and impact of RF front end impairments, available at the 
lower layers. 

 
[Daniels et al, 2010] have shown how adaptation can be performed in a convolutionally 

coded MIMO OFDM wireless system through supervised learning and SNR order. The approach 
described in this paper has been implemented on Hydra. [Kim et al, 2009] have demonstrated an 
experimental evaluation of rate adaptation for multi-antenna systems. This paper proposes 
extensions of two well-known link adaptation algorithms, Receiver-Based AutoRate (RBAR) and 
Auto Rate Fall back (ARF). Through the implementation on Hydra, the practical challenges in 
MIMO systems resulting from an additional spatial dimension have been demonstrated. [Daniels 
et al, 2009] have shown an online learning framework for link adaptation in wireless networks. 
Compared with supervised learning, this online framework uses real-time measurements to 
update the rate-adaptation classifier. [Daniels et al, 2008] have presented throughput and delay 
measurements of limited feedback beamforming in Indoor Wireless Networks. They use Hydra 
to measure high throughput for various delays and experimentally verifies the exponential 
relationship between throughput loss and delay. 

 
 
 

4.4 Commercial Systems 
This section provides a brief overview of some of the commercial systems that can be used 

for cross layer design. One such example is the commercial SDR platform from Nutaq, Inc. 
[Nutaq, 2014]. Nutaq SDR boards offer an FPGA and CPU combination as processing elements. 
For example, the PicoSDR features a Xilinx Virtex-6 FPGA and an embedded Quad-Core i7 
processor, whereas the ZeptoSDR features a Xilinx Zynq-7 FPGA and an embedded ARM Cortex- 
9 processor. This system features a radio frequency front-end, tunable from 300 MHz to 3,800 
MHz. Tuning bandwidth is 1.5 MHz to 28 MHz. Data transfer between the onboard and external 
processors is either through PCI Express or Gigabit Ethernet bus technology on the picoSDR. Both 
of these models feature a software stack allowing a model-based design approach using 
Mathworks Simulink and a text-based approach using the GNU Radio open source software. 
While the picoSDR is capable of only up to 4 x 4 MIMO support, other variants such as µSDR420 
Massive MIMO is capable of providing support for 100x100 MIMO configuration. All of the other 
radio configurations, data transfer, and processing capabilities of the µSDR420 are similar to the 
picoSDR. The Nutaq website features reference designs for 64-QAM MIMO OFDM and FPGA- 
based physical layer implementation of 802.15.4 standards. Beecube Inc. [Beecube, 2014] offers 
cross layer prototyping systems through its reconfigurable platform consisting of scalable, full 
speed interconnected modules. It supports flexible expansion options through interconnects such 
as SFP/SFP+ and HDMI. It has a symmetrical 4-FPGA based module architecture that allows for 
high availability and easy upgrade path for increased capability. It supports both direct and 
independent interfaces per FPGA. It supports ADC and DAC modules up to 5 GHz, a very fast 
virtual FPGA pin structure and throughput at speeds of 20 Gb/s. It supports the Nector OS, 
which is a distributed C-based operating system. This OS allows communication between the 
FPGA and interface, direct real-time debugging capabilities, and direct high-speed bidirectional 
communication. It has built-in support for several bus technologies, such as PCI Express, 10 GB 
Ethernet and UART. It provides layered access to user defined environments and can be 
integrated with Matlab, Simulink and Xilinx System Generator. Beecube has many products 
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based on this technology, but the miniBee is most suited for research applications. miniBee 
features a Xilinx Virtex-6 FPGA with LX550T for general applications and SX475T for wireless
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applications. It can support upto 6,400 Mb/s throughput per channel. It features an Intel Quad- 
Core i7 CPU. From a bus technology perspective, it supports the PCI Express Gen2 x4 interface 
to FPGA and PCI Express Gen2 x16 interface to the external connectors. Additional information 
on other features of the miniBee can be found in [Minibee, 2014]. BEE system technology has been 
cited by over 50 research papers, in a wide range of applications including wireless 
communications, HD video processing, signal intelligence, medical imaging and more. 

 
Ettus Research [Ettus, 2014] provides software defined radio platforms such as the 

Universal Software Radio Peripheral (USRP) family of products. It supports a frequency range 
from DC to 6 GHz, including multiple antenna (MIMO) systems. Some application areas include 
white spaces, mobile phones, public safety, spectrum monitoring, radio networking, cognitive 
radio, satellite navigation, and amateur radio. The USRP X-series and the USRP Embedded series 
products can be effectively used for cross layer protocol design. USRP X3xx features two RF 
daughter board slots that can support bandwidth upto 120 MHz. It also supports multiple high- 
speed interfaces such as Dual 10 Gigabit Ethernet and PCI Express, each supporting throughputs 
upto 200 MS/s in full duplex mode. The PCI Express bus interface also offers a low latency of 10 
microseconds. The product has 1G DDR3 memory which provides additional buffering and data 
storage memory, through its flexible access through the FPGA reference design. USRP x300 also 
provides multiple synchronization options, such as GPS synchronized timing alignment, which 
is ideal for MIMO applications. Hardware extensibility is possible through an external GPIO 
connector. Researchers can extend the capabilities of the platform through an external JTAG 
adapter that allows easy download and debugging of new FPGA images. The USRP is widely 
used by scientific research community. A Google Scholar search for USRP citations in the last 
three year time frame, yielded 2,000 results. 

 
 
 

4.5 Comparison of Existing Systems using Proposed Framework 
In this section, the relative merits and demerits of the six academic and commercial 

systems are analyzed using the evaluation framework described earlier. The first evaluation 
metric discussed is cost. As discussed in Section 4.2, cost refers to the overall cost of ownership. 
Since the general requirement is that the systems should be affordable, the value assigned to this 
metric is inversely proportional to the cost of the system. In other words, an expensive system 
will be assigned a lower value, whereas a low cost system will be assigned a higher value. Most 
of the commercial systems are feature rich, but they are generally designed out of reach of 
university researchers. Based on the pricing available on the Internet and through quotations 
received, a value of 7 has been assigned for the USRP x300, a value of 4 for the picoSDR, and a 
value of 3 for the miniBee. One of the advantages of these systems in the commercial category is 
accessibility, as they can be easily procured from the manufacturer. This may not be necessarily 
true in case of systems categorized in the academic category. Airblue is not available as a 
standalone product, so the only way one could perform research activity on Airblue is by building 
the board from scratch. While the design is readily available, there is significant amount of one- 
time cost involved in manufacturing the board. Unavailability of a printed circuit board 
schematic makes it difficult to achieve this easily. Due to this, a value of 4 has been assigned on 
the cost metric for Airblue. Hydra can be easily constructed using commercially available USRP 
boards, so a value of 7 has been assigned to it, same as the USRP. WARP boards are now available 
commercially from Mango Communications. But since these boards have been categorized under 
academic category, they have been evaluated considering the cost of building the hardware from 
scratch. There is plenty of information available from the research community on how to build 
the WARP boards. In addition, the components required for building this board are all 
commercially available at commodity prices. Due to this strong ecosystem, it is possible to build 
a board using the WARP design with minimal effort. Hence, a value of 6, between the value 
assigned for Airblue and Hydra, has been assigned to it.
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Latency is the next evaluation metric that is discussed. Latency is the minimum time it 
takes to do a single transaction. This metric refers to the ability of the system to enable researchers 
to prototype algorithms with deterministic time constraints. One of the key enabling ingredients 
is the presence of a real-time operating system based processor. None of the systems described in 
this thesis have this feature. Having said this, Airblue, WARP, picoSDR, miniBee, and USRP x300 
all feature a FPGA which enable this capability with careful programming. Hence, a value of 5 
has been assigned to this metric. Since Hydra purely relies on a general purpose processor and 
cannot guarantee deterministic processing times, a value of 3 has been assigned to it. Newer 
application areas such as cyber-physical systems, which lead to convergence of control, 
communications and computing technologies, will drive the need for low latency systems [Kim 
and Kumar, 2012]. 

 
All the systems described in this thesis either support a PCI Express, a USB, or Gigabit 

Ethernet bus from the hardware to the computer. As shown in Figure 4.9, PCI Express has faster 
data transfer as compared to Gigabit Ethernet. Since PCI Express bus is the state of art for bus 
technology at time of publication, a value of 10 has been assigned to the Throughput metric to 
those systems that provide PCI Express as bus technology. This includes all the systems in the 
commercial category such as the picoSDR, miniBee, and the USRP x300. Hydra supports a USB 
2.0 interface to the PC. USB 2.0 supports data transfer rates of 10s MB/s, which is order of 
magnitude slower than PCI Express. Due to this, a value of 5 has been assigned to this metric. 
WARP and Airblue both support a 10/100 Ethernet port, which has a data transfer rate between 
that of PCI Express and USB 2.0. Hence, a value of 7 has been assigned to this vector for these 
systems. It may be instructive to note that PCI Express bus technology, with its x4 and x16 
variants, provides high throughput with low latency values. Hence, a combination of a real-time 
processor with PCI Express bus may enable designers to build a system that scores well on both 
the latency and throughput vectors. 

 
Next, the metric of hardware agility is discussed. This refers to the ability of the system to 

reconfigure parts of RF, analog, and digital front-end during runtime. Runtime reconfigurability 
implies that parameters such as frequency and power of the RF front end can be changed, while 
running the rest of the protocol. Prototyping of cognitive radio algorithms can benefit from such 
a feature. To allow this feature, the system should have connectivity between these components 
and the FPGA fabric. Airblue and USRP x300 offer access to the RF front end through the FPGA 
logic, which allows for frequency reconfiguration. But they allow this only over two frequency 
bands, supporting the ISM applications. Additionally, they do not provide access to analog and 
digital pins on the board. Hence, a value of 6 has been assigned to this system, on the hardware 
agility metric. Both Hydra and WARP do not allow any type of reconfigurability of the analog 
and digital inputs. Most of the hardware reconfiguration on these two boards is through control 
from the general purpose processor. Due to this, a value of 3 has been assigned to these systems 
for this vector. While both the miniBee and picoSDR do not offer direct control of the RF front 
end through the FPGA logic, they provide an indirect mechanism to achieve the same. 
Additionally, they also have a continuously tunable radio front end with a frequency range up to 
3 GHz. Hence, a value of 4 has been assigned to these systems for this metric.
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Figure 4.9: Comparison of latencies for different bus technologies 
 
 
 
 

Software portability metric refers to the system s ability to allow users to extend research 
activities by easily porting software in and out of the system. In order to support this, it should 
be able to support different models of computation, such as state machine, dataflow, and text- 
based programming. This thesis shows that none of the systems described in this chapter offer 
support for all models of computation. Only the picoSDR supports both model-based design 
approach and text-based approach; hence it has been assigned a value of 6 for this metric. Other 
systems only support the text-based programming model. This allows text-based code to be 
ported to the system, as demonstrated by the popularity of GNU Radio community. Libraries 
available on this community can be easily ported to USRP and Hydra. Likewise, WARP offers 
enhanced support for porting text-based code across systems. Although these systems only 
support one model of computation, they have been able to foster community-based collaboration. 
Hence, they have been assigned a value of 4 for this metric. Since all the other boards support 
proprietary software and a single model of computation, a value of 2 has been assigned for the 
same. 

 
The final metric relates to extensibility. This refers to the ability of the system to allow 

users upgrade the hardware and software functionality through well-defined interfaces. All the 
systems offer good interoperability with external modules such as Click Router module and NS2 
through a standard software API. So, they generally score evenly on this front. However, their 
performance varies when it comes to hardware extensibility. The USRP x300 offers an external 
GPIO connector which researchers can use to extend hardware functionality through an external 
JTAG adapter. This provides superior flexibility; hence, a value of 8 has been assigned to this 
metric for the x300. miniBee, with its Honeycomb architecture, offers scalability to 4 FPGAs. 
Additionally, it offers flexible expansion options through the SFP/SFP+ and HDMI interconnects. 
Likewise, multi-channel ArgosV2 boards and Duarte s work on capacity analysis of full duplex 
systems have demonstrated WARP s capability for extensibility. Hence, a value of 6 has been 
assigned to both these systems for this metric. For all the other systems, a value of 3 has been 
assigned. 

 
The resulting evaluation metrics spider-chart is shown in Figure 4.10. This evaluation is 

as per the specifications available at the time of publication of this thesis. As time progresses, the 
examples used in this thesis may evolve. While no system is expected to score a perfect 10 on all 
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vectors, such a comparison will offer an easy way of deciding trade-off points amongst these 
vectors. For example, cost and latency could be two very critical vectors enabling researchers in
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developing nations to actively contribute to next generation communication system research. It 
is an open research topic to design an experimentation system that scores high on these metrics, 
while consciously trading off on throughput and extensibility metrics.

Figure 4.10 : Evaluation Metrics in a Spider Chart format

Table 4.1: Evaluation Metrics in a Tabular format

Airblue WARP Hydra picoSDR miniBee USRP

Cost 4 6 7 4 3 7

Latency 5 5 3 5 5 5

Throughput 7 7 5 10 10 10

Hardware Agility 6 3 3 4 4 6

Software Portability 2 4 4 6 2 4

Extensibility 3 6 3 3 6 8

4.6 Summary
Active research is being conducted on numerous new cross  layer design protocols. The
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underlying idea is to modify the traditional 7-layer OSI model and share more information across 
layers to achieve better throughput, bandwidth and energy optimization. As new information is 
available to different layers, there might be a need to reconfigure or make some changes to these
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layers. However, such cross layer changes have to be done with caution as they can cause 
unintended consequences. Due to this, every change that is made has to be evaluated carefully to 
understand the overall system impact. Many cross layer design prototyping and validation 
systems are being developed in literature. Three systems in the academic category and three 
systems in the commercial category have been described in this chapter. The hardware 
architecture and key research findings that have been enabled by these systems have been 
outlined. An evaluation framework with six key metrics is defined, to evaluate these systems. 
This framework should serve as the basis for evaluating new experimentation systems that allows 
engineers and scientists to expand the scope of cross layer design research, without affecting any 
legacy systems. It furthermore offers a scientific approach for making trade-off decisions among 
the different vectors. 

 
 
 
 


