

4
Evaluation Framework

In the previous chapters, the state of the art for cross layer design techniques has been
discussed and a new technique has been proposed based on RF front end impairments. While the
benefits of such cross layer techniques have been generally accepted, it is important that such
changes are done with caution, as discussed in the paper by [Kawadia and Kumar, 2005]. While
making protocol changes that benefit from cross layer design optimisations, it is important to
understand legacy issues and maintain backwards compatibility with existing systems. It is also
important that any proposed change is specified through a clear programming interface so that
the modularity of the architecture is maintained. Various physical layer concerns, such as
temporal and asymmetric nature of radio front end impairments, which should be considered
while doing cross layer research have been described by [Mandke et al, 2007]. Incorrectly
characterizing system losses caused by these impairments can cause the upper layers to adapt
and change behavior in a sub-optimal manner, resulting in poor overall performance. These
cautionary remarks are not meant to discourage researchers from proposing new cross layer
protocol changes; rather they are intended to emphasize the point that the proposed changes have
to be very carefully evaluated. To achieve this, it is important that researchers first conduct a
thorough theoretical analysis of the proposed protocol change and then implement and validate
their idea on an experimentation system. Many such systems have been proposed in the
literature, some of which are developed commercially and some which are developed as part of
university research have been described in this chapter. However, it is often hard to choose the
right experimentation system for a particular use case. To overcome this challenge, an evaluation
framework which presents a graphical view of evaluating such systems has been proposed.
Researchers can use such a framework to perform trade-off analysis between different
requirements and pick a system best optimized for their use-case. Key thesis contributions
described in this section are

 A framework to evaluate different experimentation systems in an objective way is
presented. Six evaluation metrics, i.e., cost, latency, throughput, hardware agility, software
portability, and extensibility, are presented. This framework provides an objective way to
evaluate different systems, so that research community can choose the system that is most suited
for their use-case. In the absence of this structured approach, it is difficult to pick the system that
is best suited for a particular application requirement.

 Survey of several experimental systems is presented with the objective of evaluating
these systems on the framework. These systems are compared along the different metrics of cost,
latency, and throughput. Results are presented in the form of a table and spider chart, which
serve as a visual aid for researchers to understand the strengths and weaknesses of each system
along the different metrics and pick the system best suited for their use-case.

4.1 Need for experimentation systems
While the benefits of cross-layer modifications are well known, caution has to be exercised

when making these changes and disturbing the highly structured and well architected 7-layer
OSI model. In this section, the importance of a good architectural design is discussed. The John
Von Neumann architectural for computing systems, the 7-layer Open Systems Interconnect (OSI)
model for internet, Shannon s architecture for communication systems, and the plant controller
feedback paradigm for control systems are all good examples of successful architectures. All of

30

31 31

these architectures have resulted in longevity of the systems and allowed independent research
and development of various modules. Architecture in a system design refers to the breaking
down of a system into modular components and systemically specifying the interface between
the components. Modularity allows rapid research and development at each layer without
researchers at each level having to understand all of the underlying components. Authors in
[Kawadia and Kumar, 2005] contend that a good architecture can lead to proliferation of systems.
Conversely, an integrated system needs to be hand crafted for every change. Even a small change
in one section has ripple effects on the rest of the system and this prevents fast evolution. Such a
system eventually reaches innovation saturation. While the von Neuman architecture has
proliferated the growth of sequential computing architecture, Valiant points out that the lack
of such an architecture for parallel computation is one of the reasons why it has not successfully
proliferated [Valiant, 1990]. The 7-layer OSI model is another example of how a good
architecture has helped in proliferation of internet and wired architecture. Even the TCP/IP
architecture is fundamentally based on the classic OSI model; it only merges some of these blocks
into single layer. In his widely cited work on capacity of discrete memoryless channels
[Shannon, 2001], Shannon has also made another key contribution. This was the separation of
the information source coding from the transmitter error correction coding. This allowed
techniques for source coding, such as gzip, rar to evolve at their own pace and on their own
preferred system, whereas error correction and modulation schemes evolved at the transmitter
side on an implementation system of their choice. All that was needed was a careful
specification of a formalized application programming interface (API) between these two layers.

Likewise, feedback architecture is critical in the functioning of control systems design.

Control system design is a process that starts with developing a mathematical model that
describes the physical system. Next step is to analyze the mathematical model to learn about their
dynamic characteristics. The final step is to create a controller to achieve certain dynamic
characteristics. A typical control system is shown in Figure 4.1. In this figure, control system refers
to the controller, actuators and the sensors. Actuators command the physical plant to take an
action and the output of the plant is captured using the sensors. These sensors then provide the
feedback signal which is compared with the reference signal to provide appropriate input to the
controller. While the actual design of the controller, actuators and sensors will vary with system,
this fundamental feedback system architecture forms the core of plant design. It is this
fundamental architecture that has enabled the massive proliferation of control systems in wide
range of applications. The 7 layer OSI model provided a perfect architecture for wired networks
and it has by default become the standard for wireless networks as well. However, wireless
networks function differently from wired networks. Using the same 7 layer OSI model for
wireless networks is appealing because of its simplicity and abstraction. The multihop decoding
and forwarding is simple to understand and implement. However, it has presented its own set of
challenges with respect to routing, power control and the need for a medium access control
(MAC). There is a fundamental tradeoff between performance and architectural needs. One needs
to be careful in pushing for cross layer design without focus on the right architecture underneath
as it can lead to brittle behavior. Some general principles to assist in the process of deciding the
merits of cross layer design proposals has been presented in [Kawadia and Kumar, 2005].

32 32

Figure 4.1: Controller System Based on Feedback

First one is to understand the law of unintended consequences. In the field of social
sciences, unintended consequences are outcomes that are not the ones originally intended by a
purposeful action. Unintended consequences can be positive, negative or perverse. Positive
outcome is an unexpected benefit, negative outcome is an unexpected detriment occurring in
addition to the desired effect, and a perverse effect is contrary to what was originally intended.
There are many examples of unintended consequences, such as medical research [Joan et al, 2004],
social networks [Bernard et al, 2009] and education [Smith et al, 1991] to name a few. Likewise,
breaking the structured OSI model by allowing cross interactions may lead to unintended
consequences, if not handled appropriately [Kawadia and Kumar, 2005]. Dependency graph is
the second problem that one needs to keep track of. A dependency graph is a directed graph
representing dependencies of various nodes to each other. In a dependency graph, the cycles of
dependencies (also called circular dependencies) lead to a situation in which no valid evaluation
order exists, because none of the objects in the cycle can be evaluated first. If a dependency graph
does not have any circular dependencies, it forms a directed acyclic graph, and an evaluation
order may be found by topological sorting. Most topological sorting algorithms are also capable
of detecting cycles in their inputs, however, it may be desirable to perform cycle detection
separately from topological sorting in order to provide appropriate handling for the detected
cycles. Dependency graphs with cyclic dependencies can lead to unstable situations. If a
particular parameter is controlled and used by two different adaptation loops, then this could
lead to a source of conflict. Adaptive control theory suggests a solution to this problem through
the usage of time-scale separation [Johan et al, 2008; Kumar, 1985]. Consider a process C as shown
Figure 4.2a, where two processes A and B are trying to control it. If these two control signals are
separated in time as shown in the Figure 4.2b, then stability can be achieved. However, this
requires detailed and careful analysis. Cross layer design proposals could potentially result in
such situations and have to be handled carefully. A final word of caution is related to the
development of spaghetti, unstructured code resulting from these cross layer interactions. If not
managed properly, it can lead to a system that is not maintainable in the long run. In summary,
one can argue that cross layer design proposals are required to advance the art of wireless
communications, but a careful approach must be taken to take care of the issues listed above.

Over the past 5 years, active research is being conducted in the area of platforms that

enable cross layer design such as the SORA platform [Tan et al, 2011], the beeCube platform
[Rotham and Cheng, 2011], MICA platform [Hill and Culler, 2012], testbed for cross layer design
in multihop networks [De et al, 2005] to name a few. The test platforms which spur active research
by its ability to modify or add new capabilities are the ones that truly enhance the capabilities of
the research fraternity. Section 4.2 presents a generalized evaluation framework for comparing
different experimentation systems. Section 4.3.1 presents the hardware architecture and new

33 33

research findings enabled by the Airblue platform, designed by researchers at the Massachusetts
Institute of Technology. Section 4.3.2 describes the Wireless Access Research Platform (WARP)
designed by researchers at Rice University. Section 4.3.3 describes the HYDRA platform designed
by researchers at the University of Texas at Austin. Section 4.4 presents some of the commercially
available platforms. Finally, Section 4.5 compares the different systems using the evaluation
framework described earlier.

Figure 4.2a: Dependency on Process C from both Process A and Process B

Figure 4.2b: Timescale Separation between Process A and Process B

4.2 Evaluation Framework
The past decade has seen a proliferation of many systems being developed for software

defined radio research. Additionally, these systems have also been used for enabling research on
cross layer protocols. The research community currently lacks a formalized methodology for
objectively comparing such systems. One of the contributions of this thesis is to present an
evaluation framework that will address this issue. In this section, six key evaluation metrics that
define this framework are described. From a visualization perspective, these metrics are
presented in the form of a spider-chart as shown in Figure 4.3. Such visualization graphs make it

334

easy to compare a particular system with others at a glance. Each metric, as shown on the axis of
this graph, has a maximum value of 10 and minimum value of 0. As per this evaluation
framework, a higher value for a metric implies a better score for the particular SDR system.

Figure 4.3: Evaluation Metrics

1. Cost: This metric refers to the cost of ownership of the prototyping system. Cost of ownership
refers to the cost of purchase, development and maintenance of the system. In the terminology
used in this thesis, this does not include the upgrade cost. Ability to upgrade the system and the
associated costs is captured independently in a different metric, which is described later. Cost is
chosen as one of the key metrics because it defines the affordability of the system. Researchers
often have to make a trade-off between functionality and cost. Creators of experimentation
systems often add several features to their design. Although these features are useful for many
applications, they tend to increase the overall cost of the system, to the extent that it goes out of
reach of many researchers. There are various ways in which cost of experimentation system can
be kept low, such as use of commercially available off-the-shelf technology and the ability to
integrate commodity radios.

2. Latency: Latency is defined as the delay between any two activities in a communication system.
One specific example that is commonly used is the turn-around time between transmit and
receive nodes. This evaluation metric refers to the smallest value of latency that can be
implemented on the prototyping system. An experimentation system should ideally be capable
of supporting latencies an order of magnitude better than the minimum latency required by the
protocol. Latency is determined by both the speed and deterministic nature of processing.
Designers should ensure that their system supports features such as heterogeneous computing
[Khokkar et al, 1993] and effective bus technology between compute nodes to achieve latency
requirements of emerging applications such as cyber-physical systems.

3. Throughput: Throughput, measured in bits/second, is defined as the amount of data transfer
that can be sustained on a system. This metric refers to the ability of the system to transmit or
receive data at a desired rate. As applications are constantly pushing the need for high streaming
data rates, high throughput is fast becoming a very important aspect of communications system
design research. It is important that an experimentation system offers users the ability to
prototype new algorithms at desired streaming rates. Maximum achievable streaming rates are
generally determined by parameters such as instantaneous acquisition bandwidth of the radio

35 35

front end, sampling rate of the baseband analog to digital converter (ADC) and the type of
heterogeneous processing units used, such as FPGA, DSP, or graphical processing units. It is
equally important to think about the type of bus architecture that connects these units together.
The type of bus chosen should be able to provide high throughput to meet the demands of latest
communication standards.
4. Hardware Agility: This metric refers to the ability of the system to allow users the flexibility to

reconfigure input and output terminals during runtime. This capability is applicable for analog
characteristics such as radio frequencies, power level, and sampling rate of the ADCs and digital
to analog converters (DACs). One application for such frequency agility is in situations where
researchers want to conduct experiments in the unlicensed Industrial Scientific Medical (ISM)
band due to the availability of low-cost radio front ends in these bands. However, many
commercial technologies such as Zigbee, wireless, cordless phones, and Bluetooth also operate in
the same frequency range. Any experiment being performed in these bands should be carefully
evaluated for possible interference. One approach to avoid this undesired behavior is to identify
the region of least interference and tune the RF front end to operate in that region. Hardware
agility can also be used for reconfiguring the digital input and output terminals which can be
used to transmit a pre-determined word pattern. This can be useful for applications such as bit
error rate estimation and pin diode reconfiguration for reconfigurable antenna arrays. An
experimentation system should provide users the ability to achieve this through routing of
control signals through the FPGA logic.

5. Software Portability: Ability to leverage software developed by research community is a critical
element for enabling cross layer research. Software portability metric refers to the ability of the
system to allow porting of software across multiple homogeneous or heterogeneous compute
nodes. As shown in Figure 4.4, a user of Platform A should be able to easily bring in code
developed on Platform B (port-in) and vice-versa (port-out). For this to happen, the
experimentation system should offer system design software experience, which allows the
software to be specified in various programming languages. For example, in some cases a text
based programming language, such as C/C++/Matlab is ideal, whereas in some other cases a
procedural language like VHDL could be ideal, and in yet other cases a state machine diagram
approach may be more applicable. These various programming paradigms are referred to as
hybrid models of computation [Lee et al, 1998]. The software support for any ideal
experimentation system should be able to handle multiple models of computation so that the
developed code is hardware agnostic and portable.

Figure 4.4: Software Portability and Extensibility

36 36

6. Extensibility: This metric refers to the ability provided by the system to easily extend (upgrade)
its hardware and software capabilities. For good out-of-the-box experience, a system should
present a stable start-up codebase. For example, researchers should be able to quickly build an
OFDM transceiver by easily putting together basic PHY/MAC protocols either shipped as
reference code or available as open source. The next step is to enable algorithm modifications,
which may be needed to replace underperforming algorithms with new ones that meet tighter
throughput or latency constraints. In some cases, FPGA-specific optimizations may be needed to
meet specific resource usage and timing requirements of the FPGA. Such requirements demand
extensibility of the hardware and software beyond its original intent. Such type of extensibility is
generally enabled by two key features - a generalized hardware interconnect, such as GPIO,
SFP/SFP+ or HDMI, which allows users to easily add new hard- ware capabilities to the platform;
and a solid software architecture with well-defined and well documented interfaces between
different blocks. An Object Oriented Programming (OOP) approach is ideal for such an
architecture, as it allows scalability of the programming interface, while maintaining backwards
compatibility. The system should also offer stable mechanism for error handling. In summary,
software and hardware extensibility is essential to ensure shelf time of the system.

Now that the key evaluation metrics are described, the next section describes various

systems found in the literature. These systems have been classified into three categories, which
are as follows:

Academic: This category includes systems developed as part of research activities at

universities all around the world. While this list is not exhaustive, this thesis focusses on the MIT
Airblue system, UT-Austin Hydra system, and RICE WARP system.

Commercial: This category includes systems developed by industry and sold

commercially for scientific research activities. This thesis describes the Ettus Research USRP
board, Nutaq SDR board, and beeCube miniBee board.

Hobbyist: This category includes low cost boards centralized around a user community

of open source enthusiasts. It is primarily targeted towards hobbyists. Examples in this category
include systems such as hackRF [HackRF, 2014] and bladeRF [BladeRF, 2014].

Section 4.5 evaluates these systems using the evaluation framework described earlier.

4.3 Academic Systems

4.3.1 MIT Airblue Platform

Airblue is a system developed by researchers at the Massachusetts Institute of Technology
to aid cross-layer wireless protocol research. The design of this system is based on the principles
of modular refinement, latency insensitive design, and data-driven control. Modular refinement
is defined as the ability to make changes in one module of the system without having to
understand or make changes to the rest of the modules in the system. Latency-insenstivity and
data-driven control are two key properties that are essential for modular refinement in a new
protocol [Ng et al, 2010], which are described next.

Latency insensitivity is a property that enhances modularity of the system such that the

design of a particular module does not depend on the time taken by the previous module. One
way in which this can be achieved is by the usage of a FIFO buffer interface (handshake) unit
between the two modules. This is a big advantage over latency sensitive systems in which one
has to understand the timing constraints of the original implementation by purely examining its

37 37

design. This is a very difficult process. The ability to synchronize between data and control is the
second property needed for modular refinement. Modifications to the protocol to enable cross-
layer research require new ways of sending control signals to the lower layers, unlike standard
protocols where specific control and configuration paths are embedded in the design. An implicit
synchronization can be achieved by calculating the time taken by data channel a-priori and
ensuring that the control channel arrives at the right time. Such a system achieves high
performance because additional circuitry is not needed to specifically handle synchronization,
but makes it hard to add new controls. To overcome this problem, Airblue designers have
proposed the technique of data-driven control. Instead of control and data signals being two
independent signals, the idea is to embed the control signal with the data signal, as shown in
Figure 4.5. The clear benefit of this approach is that synchronization of data and control is explicit
and is forced by the packet, rather than relying on the hardware implementation. Such control
signals can be embedded in the packet at different granularity levels as well. The concept of data-
driven control is not new to hardware or software systems. The Click Modular Software [Kohler
et al, 2000] uses the concepts of packet annotations to couple data and control packets together.
Similarly, this technique is also used in software-defined radio based systems as described in
[Nychis et al, 2009].

Figure 4.6 shows a block diagram of the system. The FPGA system is divided to run at

three clock speeds, 20 MHz, 25 MHz, and 40 MHz. The device interface block is clocked at a speed
of 20 MHz and is used to provide a generic interface between the digital baseband and analog RF
front end. The next clock speed of 25 MHz is used to run the baseband processing block, the MAC
Unit block, and the debug interface unit. The baseband processor implements the PHY layer,
converting bit streams to digital baseband signal during transmission. On the receive side, the
baseband processor performs the reverse operation.

38 38

Figure 4.5: Synchronized Data and Control Signals

39 39

The MAC unit controls the receiving and transmitting phase of the baseband processor
and also implements the sending of ACK signals. The debug interface unit collects other internal
signals, representing the state of the system, and communicates this state to the host PC. The soft
processor, implemented on the FPGA, runs at 40 MHz and handles off-chip communication
signals. The baseband design is built using a set of open source modules from an OFDM
Workbench [Ng et al, 2007]. The library has been written in Bluespec, which is a high-level design
language that compiles into Verilog. It can be further translated into FPGA, ASIC, or software
implementations using other tools [Rishiyur, 2004].

Figure 4.6: Hardware Architecture of the Airblue Platform

The MAC implemented on Airblue has two key features that enable timely
communication with the PHY layers. First, it is implemented in hardware, with dedicated low-
latency channels to the baseband. Secondly, it is able to communicate with the baseband in a
granular fashion, where the granularity is defined at byte level, rather than frame level. This
enables the MAC to start processing data as soon as it is available. One of the challenges in a
typical RF front end is that components such as the DACs, ADCs, and gain circuits are latency
sensitive. If one changes the gain, it takes a few cycles before the correct gain value is reflected in
the incoming signals. Additionally, different components demonstrate different timing features.
Airblue abstracts the physical layer as a pair of bidirectional FIFOs to which the baseband can
connect. The incoming FIFO provides radio samples from the receiver and the outgoing FIFO
sends samples to the transmitter. The development platform used for Airblue is Intel s Architect
Workbench (AWB), which is an open source management tool [Thomas et al, 1988]. AWB
provides an interactive environment for configuring, building and running FPGA and general
purpose processor co-designs. AWB also makes it easy to debug new modules being developed.
In addition to supporting over-the-air operation, Airblue also makes it easy to use an online

40 40

channel emulator. Users can connect multiple transceivers to the channel simulator and simulate
AWGN and fading environments.

41 41

Some of the research activities that Airblue has enabled are described. The modular
architecture of Airblue has enabled addition of custom modules, such as the interceptor, to the
MAC. Modifications to the baseband PHY to add new blocks to compute and export SoftPHY
hints [Jamieson, 2008] have been demonstrated on Airblue. Likewise, replacement of hard output
Viterbi decoder algorithm with the BCJR algorithm [Bahl et al, 1974] has also been demonstrated
on Airblue. All of these examples show the extensibility offered by Airblue to add custom
algorithms. Airblue also has the ability to reconfigure the MAC during runtime through
interrupts. Such a mechanism is useful in CMAP, where the MAC must first receive the headers
of the ongoing transmission, and then switch to transmit mode if its pending transmission does
not conflict with the ongoing transmission. Spinal codes [Perry et al, 2012] have been implemented
on Airblue and it has been demonstrated that these codes can decode up to a rate of 10 Mbps.
Spinal codes are a new class of rateless codes that enable wireless networks cope with time-
varying channel conditions, without requiring any explicit bit rate selection. Traditionally,
hardware designs partitioned across multiple FPGAs have suffered from low performance
because of the inefficiency of maintaining cycle-by-cycle timing among discrete FPGAs. [Fleming
et al, 2012] have presented a mechanism by which complex designs may be efficiently and
automatically partitioned among multiple FPGAs using explicitly programmed latency-
insensitive links.

4.3.2 RICE WARP System

Wireless open-Access Research (WARP) [Hunter et al, 2006] is a scalable and extensible
system, with the ability to be programmed being one of its key features. WARP offers interaction
between the PHY and MAC layers through a flexible interrupt driven interface, which enables
evaluation of a large class of cross-layer protocols. Figure 4.7 depicts the WARP hardware. Block
A depicts the main board which contains the Xilinx Virtex-II Pro FPGA board. This FPGA
contains 8 Rocket I/O transceiver blocks, two PowerPC 405 processor blocks, 9,280 logic
programmable slices, 88 multiplier blocks and 1,584 KB block memory size. The PHY layer of
WARP is based on custom OFDM transceivers, which are intended for IEEE 802.11 a/g/n
standards. The MAC protocols are implemented in C and interact with the PHY processing units
and supporting peripherals in the FPGA fabric using the flexible interrupt driven interface. Block
B represents four general purpose daughter-card slots in the FPGA board, which can be utilized
to design radio, analog input/output and video functionality. The custom designed WARP radio
is capable of supporting both the 2.4 GHz ISM and 5.8 GHz ISM bands with a 40 MHz bandwidth.
Because there are four general purpose daughter-card slots, WARP can be extended to enable 4 x
4 MIMO systems by tuning the radio front end. Block D represents the 10/100 Ethernet port bus
interface from the WARP to the PC.

Many practical experiments have been implemented on WARP, including the 2x2

Alamouti and 2x2 spatial multiplexing systems, with antenna selection capability. MAC protocols
can be rapidly implemented through a state machine developed in C, which can then be compiled
to run on one of the two PowerPC 405 cores. When downloaded onto the PowerPC, the MAC
protocol directly communicates with the hardware peripherals. [Hunter et al, 2006] have created
a flexible interface that provides user-level access to parameters common to most physical layers,
in order to facilitate the development of new MAC protocols on WARP. Hence, WARP provides
seamless flexibility in the development of cross-layer protocols such as SNR-based rate
adaptation, advanced MIMO MAC protocols with beamforming and smart antenna selection
features. Different medium access protocols such as ALOHA, Carrier Sense Multiple Access
(CSMA), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), and Orthogonal
Frequency Division Multiple Access (OFDMA) have also been implemented on WARP.

42 42

Figure 4.7: Hardware Architecture of the Rice WARP platform

Flexibility to create custom designs has resulted in many significant research findings
based on WARP. ArgosV2 is a 64-antenna base station prototype and serves as a compact,
powerful, and scalable multi-antenna research platform based on WARP [Shephard et al, 2013].
The modular architecture and real-time capability of ArgosV2 can support hundreds of base
station antennas and tens of users with streaming applications. Researchers have leveraged the
flexibility of WARP to overcome the challenge of extending full-duplex communication for long-
range applications due to residual behavior from self-interference [Sahai et al, 2013]. [Kivayash et
al, 2013] have presented the design and implementation of spyware communication circuits built
into the widely used carrier sense multiple access with collision avoidance (CSMA/CA) protocol.
The spyware has been implemented and evaluated on WARP using metrics such as
implementation efficiency of encoder, robustness of communication scheme to heterogeneous
CSMA/CA effects, and difficulty of covert channel detection. [Magistretti et al, 2012] have used
the WARP to design, implement and evaluate a modified version of the IEEE 802.11 protocol
(802.11ec) without control messages. Instead of explicit control messages, 802.11ec employs
symbol sequences that can be correlated with the timing information. They have used WARP
because it gives them the flexibility to perform a large number of experiments and compare the
performance of their proposed standard with the existing standard. [Duarte et al, 2012] have
provided an experiment-driven characterization of a full-duplex wireless system on WARP.
Through experimental results, they show that as the received self-interference power increases,
so does the average amount of cancellation for active cancellation techniques. They have also
derived an experiment-driven model and performed capacity analysis of a full-duplex wireless
system implemented using WARP with commercial off-the-shelf MIMO Radios. [Shi et al, 2009]
have created models for synchronous CSMA (S-CSMA) using WARP. The flexibility of this
system allowed them to measure the impact of clock drift on MAC parameters such as contention
window size, control packet size and carrier sense regulated by usage of gated time. In addition
to the above mentioned research outcomes, a large number of research platforms have also been
developed based off WARP [Hershberger et al, 2013; Shishkin et al, 2011; Korakis et al, 2009].

4.3.3 UT Hydra System

Hydra is a fully flexible wireless prototyping system developed at the University of Texas

43 43

at Austin [Mandke et al, 2007]. Hydra consists of a hardware board and PC-based software stack
as shown in Figure 4.8. The software stack is implemented on a general purpose processor and
contains implementation for the PHY, MAC and Network layers. FPGA or ASIC implementations

44 44

used by other prototypes are high performance, but the trade-off is that they require experience
with hardware description languages. To circumvent this problem, Hydra software stack is
implemented using open source GNU Radio [Ettus Research, 2014] and Click Modular Software.
The modular and open-source nature of these programs makes it easy for researchers to develop
individual blocks and then leverage intellectual property (IP) available on the community.
Additionally, GNU Radio stack also provides a convenient application programming interface
for setting various parameters on the RF front end of Hydra, which is based on the Universal
Software Radio Peripheral (USRP) board. The USRP has continuous frequency coverage in the
ISM 2.4 GHz and ISM 5.8 GHz bands. The bus interface between the hardware board and
software stack is USB 2.0.

Figure 4.8: Architecture of the UT Hydra platform

The hardware components of USRP include an FPGA, four high-speed ADCs and DACs.
The RF front end can be programmed to provide various signal processing functionalities such
as filtering, upconversion, and downconversion. Hydra can be further extended for synchronized
multiple input multiple output (MIMO) capability by adding more USRP RF front ends.

Some of the key research findings that have been enabled by Hydra are described next.

[Mandke et al, 2007] have suggested temporal scaling, reciprocity, and cross-layer adaptation as
three higher layer considerations that should be kept in mind when designing any cross-layer
protocol. Temporal scaling refers to the time scale or granularity with which communication
happens between the physical layer and the upper layers. Generally, temporal scaling is
measured as a function of the time required to transmit and receive packages. However, it is also
important to consider the amount of time that is taken to process the packets. This implies that
the MAC layer has to appropriately tune its parameters such as inter-frame spacing, as the packet

45 45

sizes change. Secondly, many researchers generally assume that the measurement parameters
estimated in the forward and reverse link in a bidirectional communication link are reciprocal.

46 46

This implies that if one makes a particular measurement in the forward link, then this
measurement can be considered as valid in the reverse link as well. Through various
experimental results, [Mandke et al, 2007] have shown that the reciprocity assumption may not
always hold true. Interference and variance in the RF hardware are the two main reasons that
contribute to this asymmetry. In most cross-layer design algorithms, higher layers modify their
behavior based on information received from the lower layers. The behavior is however not as
simplistic and higher layers must be made aware of the degrees of freedom available, such as
automatic gain control mechanisms and impact of RF front end impairments, available at the
lower layers.

[Daniels et al, 2010] have shown how adaptation can be performed in a convolutionally

coded MIMO OFDM wireless system through supervised learning and SNR order. The approach
described in this paper has been implemented on Hydra. [Kim et al, 2009] have demonstrated an
experimental evaluation of rate adaptation for multi-antenna systems. This paper proposes
extensions of two well-known link adaptation algorithms, Receiver-Based AutoRate (RBAR) and
Auto Rate Fall back (ARF). Through the implementation on Hydra, the practical challenges in
MIMO systems resulting from an additional spatial dimension have been demonstrated. [Daniels
et al, 2009] have shown an online learning framework for link adaptation in wireless networks.
Compared with supervised learning, this online framework uses real-time measurements to
update the rate-adaptation classifier. [Daniels et al, 2008] have presented throughput and delay
measurements of limited feedback beamforming in Indoor Wireless Networks. They use Hydra
to measure high throughput for various delays and experimentally verifies the exponential
relationship between throughput loss and delay.

4.4 Commercial Systems
This section provides a brief overview of some of the commercial systems that can be used

for cross layer design. One such example is the commercial SDR platform from Nutaq, Inc.
[Nutaq, 2014]. Nutaq SDR boards offer an FPGA and CPU combination as processing elements.
For example, the PicoSDR features a Xilinx Virtex-6 FPGA and an embedded Quad-Core i7
processor, whereas the ZeptoSDR features a Xilinx Zynq-7 FPGA and an embedded ARM Cortex-
9 processor. This system features a radio frequency front-end, tunable from 300 MHz to 3,800
MHz. Tuning bandwidth is 1.5 MHz to 28 MHz. Data transfer between the onboard and external
processors is either through PCI Express or Gigabit Ethernet bus technology on the picoSDR. Both
of these models feature a software stack allowing a model-based design approach using
Mathworks Simulink and a text-based approach using the GNU Radio open source software.
While the picoSDR is capable of only up to 4 x 4 MIMO support, other variants such as µSDR420
Massive MIMO is capable of providing support for 100x100 MIMO configuration. All of the other
radio configurations, data transfer, and processing capabilities of the µSDR420 are similar to the
picoSDR. The Nutaq website features reference designs for 64-QAM MIMO OFDM and FPGA-
based physical layer implementation of 802.15.4 standards. Beecube Inc. [Beecube, 2014] offers
cross layer prototyping systems through its reconfigurable platform consisting of scalable, full
speed interconnected modules. It supports flexible expansion options through interconnects such
as SFP/SFP+ and HDMI. It has a symmetrical 4-FPGA based module architecture that allows for
high availability and easy upgrade path for increased capability. It supports both direct and
independent interfaces per FPGA. It supports ADC and DAC modules up to 5 GHz, a very fast
virtual FPGA pin structure and throughput at speeds of 20 Gb/s. It supports the Nector OS,
which is a distributed C-based operating system. This OS allows communication between the
FPGA and interface, direct real-time debugging capabilities, and direct high-speed bidirectional
communication. It has built-in support for several bus technologies, such as PCI Express, 10 GB
Ethernet and UART. It provides layered access to user defined environments and can be
integrated with Matlab, Simulink and Xilinx System Generator. Beecube has many products

47 47

based on this technology, but the miniBee is most suited for research applications. miniBee
features a Xilinx Virtex-6 FPGA with LX550T for general applications and SX475T for wireless

48 48

applications. It can support upto 6,400 Mb/s throughput per channel. It features an Intel Quad-
Core i7 CPU. From a bus technology perspective, it supports the PCI Express Gen2 x4 interface
to FPGA and PCI Express Gen2 x16 interface to the external connectors. Additional information
on other features of the miniBee can be found in [Minibee, 2014]. BEE system technology has been
cited by over 50 research papers, in a wide range of applications including wireless
communications, HD video processing, signal intelligence, medical imaging and more.

Ettus Research [Ettus, 2014] provides software defined radio platforms such as the

Universal Software Radio Peripheral (USRP) family of products. It supports a frequency range
from DC to 6 GHz, including multiple antenna (MIMO) systems. Some application areas include
white spaces, mobile phones, public safety, spectrum monitoring, radio networking, cognitive
radio, satellite navigation, and amateur radio. The USRP X-series and the USRP Embedded series
products can be effectively used for cross layer protocol design. USRP X3xx features two RF
daughter board slots that can support bandwidth upto 120 MHz. It also supports multiple high-
speed interfaces such as Dual 10 Gigabit Ethernet and PCI Express, each supporting throughputs
upto 200 MS/s in full duplex mode. The PCI Express bus interface also offers a low latency of 10
microseconds. The product has 1G DDR3 memory which provides additional buffering and data
storage memory, through its flexible access through the FPGA reference design. USRP x300 also
provides multiple synchronization options, such as GPS synchronized timing alignment, which
is ideal for MIMO applications. Hardware extensibility is possible through an external GPIO
connector. Researchers can extend the capabilities of the platform through an external JTAG
adapter that allows easy download and debugging of new FPGA images. The USRP is widely
used by scientific research community. A Google Scholar search for USRP citations in the last
three year time frame, yielded 2,000 results.

4.5 Comparison of Existing Systems using Proposed Framework
In this section, the relative merits and demerits of the six academic and commercial

systems are analyzed using the evaluation framework described earlier. The first evaluation
metric discussed is cost. As discussed in Section 4.2, cost refers to the overall cost of ownership.
Since the general requirement is that the systems should be affordable, the value assigned to this
metric is inversely proportional to the cost of the system. In other words, an expensive system
will be assigned a lower value, whereas a low cost system will be assigned a higher value. Most
of the commercial systems are feature rich, but they are generally designed out of reach of
university researchers. Based on the pricing available on the Internet and through quotations
received, a value of 7 has been assigned for the USRP x300, a value of 4 for the picoSDR, and a
value of 3 for the miniBee. One of the advantages of these systems in the commercial category is
accessibility, as they can be easily procured from the manufacturer. This may not be necessarily
true in case of systems categorized in the academic category. Airblue is not available as a
standalone product, so the only way one could perform research activity on Airblue is by building
the board from scratch. While the design is readily available, there is significant amount of one-
time cost involved in manufacturing the board. Unavailability of a printed circuit board
schematic makes it difficult to achieve this easily. Due to this, a value of 4 has been assigned on
the cost metric for Airblue. Hydra can be easily constructed using commercially available USRP
boards, so a value of 7 has been assigned to it, same as the USRP. WARP boards are now available
commercially from Mango Communications. But since these boards have been categorized under
academic category, they have been evaluated considering the cost of building the hardware from
scratch. There is plenty of information available from the research community on how to build
the WARP boards. In addition, the components required for building this board are all
commercially available at commodity prices. Due to this strong ecosystem, it is possible to build
a board using the WARP design with minimal effort. Hence, a value of 6, between the value
assigned for Airblue and Hydra, has been assigned to it.

49 49

Latency is the next evaluation metric that is discussed. Latency is the minimum time it
takes to do a single transaction. This metric refers to the ability of the system to enable researchers
to prototype algorithms with deterministic time constraints. One of the key enabling ingredients
is the presence of a real-time operating system based processor. None of the systems described in
this thesis have this feature. Having said this, Airblue, WARP, picoSDR, miniBee, and USRP x300
all feature a FPGA which enable this capability with careful programming. Hence, a value of 5
has been assigned to this metric. Since Hydra purely relies on a general purpose processor and
cannot guarantee deterministic processing times, a value of 3 has been assigned to it. Newer
application areas such as cyber-physical systems, which lead to convergence of control,
communications and computing technologies, will drive the need for low latency systems [Kim
and Kumar, 2012].

All the systems described in this thesis either support a PCI Express, a USB, or Gigabit

Ethernet bus from the hardware to the computer. As shown in Figure 4.9, PCI Express has faster
data transfer as compared to Gigabit Ethernet. Since PCI Express bus is the state of art for bus
technology at time of publication, a value of 10 has been assigned to the Throughput metric to
those systems that provide PCI Express as bus technology. This includes all the systems in the
commercial category such as the picoSDR, miniBee, and the USRP x300. Hydra supports a USB
2.0 interface to the PC. USB 2.0 supports data transfer rates of 10s MB/s, which is order of
magnitude slower than PCI Express. Due to this, a value of 5 has been assigned to this metric.
WARP and Airblue both support a 10/100 Ethernet port, which has a data transfer rate between
that of PCI Express and USB 2.0. Hence, a value of 7 has been assigned to this vector for these
systems. It may be instructive to note that PCI Express bus technology, with its x4 and x16
variants, provides high throughput with low latency values. Hence, a combination of a real-time
processor with PCI Express bus may enable designers to build a system that scores well on both
the latency and throughput vectors.

Next, the metric of hardware agility is discussed. This refers to the ability of the system to

reconfigure parts of RF, analog, and digital front-end during runtime. Runtime reconfigurability
implies that parameters such as frequency and power of the RF front end can be changed, while
running the rest of the protocol. Prototyping of cognitive radio algorithms can benefit from such
a feature. To allow this feature, the system should have connectivity between these components
and the FPGA fabric. Airblue and USRP x300 offer access to the RF front end through the FPGA
logic, which allows for frequency reconfiguration. But they allow this only over two frequency
bands, supporting the ISM applications. Additionally, they do not provide access to analog and
digital pins on the board. Hence, a value of 6 has been assigned to this system, on the hardware
agility metric. Both Hydra and WARP do not allow any type of reconfigurability of the analog
and digital inputs. Most of the hardware reconfiguration on these two boards is through control
from the general purpose processor. Due to this, a value of 3 has been assigned to these systems
for this vector. While both the miniBee and picoSDR do not offer direct control of the RF front
end through the FPGA logic, they provide an indirect mechanism to achieve the same.
Additionally, they also have a continuously tunable radio front end with a frequency range up to
3 GHz. Hence, a value of 4 has been assigned to these systems for this metric.

50 50

Figure 4.9: Comparison of latencies for different bus technologies

Software portability metric refers to the system s ability to allow users to extend research
activities by easily porting software in and out of the system. In order to support this, it should
be able to support different models of computation, such as state machine, dataflow, and text-
based programming. This thesis shows that none of the systems described in this chapter offer
support for all models of computation. Only the picoSDR supports both model-based design
approach and text-based approach; hence it has been assigned a value of 6 for this metric. Other
systems only support the text-based programming model. This allows text-based code to be
ported to the system, as demonstrated by the popularity of GNU Radio community. Libraries
available on this community can be easily ported to USRP and Hydra. Likewise, WARP offers
enhanced support for porting text-based code across systems. Although these systems only
support one model of computation, they have been able to foster community-based collaboration.
Hence, they have been assigned a value of 4 for this metric. Since all the other boards support
proprietary software and a single model of computation, a value of 2 has been assigned for the
same.

The final metric relates to extensibility. This refers to the ability of the system to allow

users upgrade the hardware and software functionality through well-defined interfaces. All the
systems offer good interoperability with external modules such as Click Router module and NS2
through a standard software API. So, they generally score evenly on this front. However, their
performance varies when it comes to hardware extensibility. The USRP x300 offers an external
GPIO connector which researchers can use to extend hardware functionality through an external
JTAG adapter. This provides superior flexibility; hence, a value of 8 has been assigned to this
metric for the x300. miniBee, with its Honeycomb architecture, offers scalability to 4 FPGAs.
Additionally, it offers flexible expansion options through the SFP/SFP+ and HDMI interconnects.
Likewise, multi-channel ArgosV2 boards and Duarte s work on capacity analysis of full duplex
systems have demonstrated WARP s capability for extensibility. Hence, a value of 6 has been
assigned to both these systems for this metric. For all the other systems, a value of 3 has been
assigned.

The resulting evaluation metrics spider-chart is shown in Figure 4.10. This evaluation is

as per the specifications available at the time of publication of this thesis. As time progresses, the
examples used in this thesis may evolve. While no system is expected to score a perfect 10 on all

51 51

vectors, such a comparison will offer an easy way of deciding trade-off points amongst these
vectors. For example, cost and latency could be two very critical vectors enabling researchers in

5252

developing nations to actively contribute to next generation communication system research. It
is an open research topic to design an experimentation system that scores high on these metrics,
while consciously trading off on throughput and extensibility metrics.

Figure 4.10 : Evaluation Metrics in a Spider Chart format

Table 4.1: Evaluation Metrics in a Tabular format

Airblue WARP Hydra picoSDR miniBee USRP

Cost 4 6 7 4 3 7

Latency 5 5 3 5 5 5

Throughput 7 7 5 10 10 10

Hardware Agility 6 3 3 4 4 6

Software Portability 2 4 4 6 2 4

Extensibility 3 6 3 3 6 8

4.6 Summary
Active research is being conducted on numerous new cross layer design protocols. The

53 53

underlying idea is to modify the traditional 7-layer OSI model and share more information across
layers to achieve better throughput, bandwidth and energy optimization. As new information is
available to different layers, there might be a need to reconfigure or make some changes to these

54 54

layers. However, such cross layer changes have to be done with caution as they can cause
unintended consequences. Due to this, every change that is made has to be evaluated carefully to
understand the overall system impact. Many cross layer design prototyping and validation
systems are being developed in literature. Three systems in the academic category and three
systems in the commercial category have been described in this chapter. The hardware
architecture and key research findings that have been enabled by these systems have been
outlined. An evaluation framework with six key metrics is defined, to evaluate these systems.
This framework should serve as the basis for evaluating new experimentation systems that allows
engineers and scientists to expand the scope of cross layer design research, without affecting any
legacy systems. It furthermore offers a scientific approach for making trade-off decisions among
the different vectors.

